Muutke küpsiste eelistusi

E-raamat: Handbook of Moth-Flame Optimization Algorithm: Variants, Hybrids, Improvements, and Applications

  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Moth-Flame Optimization algorithm is an emerging meta-heuristic and has been widely used in both science and industry. Solving optimization problem using this algorithm requires addressing a number of challenges, including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters.

Handbook of Moth-Flame Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides an in-depth analysis of this algorithm and the existing methods in the literature to cope with such challenges.

Key Features:





Reviews the literature of the Moth-Flame Optimization algorithm Provides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithm Proposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problems Demonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithm Introduces several applications areas of the Moth-Flame Optimization algorithm

This handbook will interest researchers in evolutionary computation and meta-heuristics and those who are interested in applying Moth-Flame Optimization algorithm and swarm intelligence methods overall to different application areas.
Section I Moth-Flame Optimization Algorithm for Different Optimization
Problems

Chapter 1 Optimization and Meta-heuristics

Seyedali Mirjalili

Chapter 2 Moth-Flame Optimization Algorithm for Feature Selection: A Review
and Future Trends

Qasem Al-Tashi, Seyedali Mirjalili, Jia Wu, Said Jadid Abdulkadir, Tareq M.
Shami, Nima Khodadadi, and Alawi Alqushaibi

Chapter 3 An Efficient Binary Moth-Flame Optimization Algorithm with Cauchy
Mutation for Solving the Graph Coloring Problem

Yass ine Meraihi, Asm a Benmess aoud Gabis, and Seyedali Mirjalili

Chapter 4 Evolving Deep Neural Network by Customized Moth-Flame
Optimization Algorithm for Underwater Targets Recognition

Mohamm ad Khishe, Mokhtar Mohamm adi, Tarik A. Rashid, Hoger Mahmud, and
Seyedali Mirjalili

Section II Variants of Moth-Flame Optimization Algorithm

Chapter 5 Multi-objective Moth-Flame Optimization Algorithm for Engineering
Problems

Nima Khodadadi, Seyed Mohamm ad Mirjalili, and Seyedali Mirjalili

Chapter 6 Accelerating Optimization Using Vectorized Moth-Flame Optimizer
(vMFO)

AmirPouya Hemm asian, Kazem Meidani, Seyedali Mirjalili, and Amir Barati
Farimani

Chapter 7 A Modified Moth-Flame Optimization Algorithm for Image
Segmentation

Sanjoy Chakraborty, Sukanta Nama, Apu Kumar Saha, and Seyedali Mirjalili

Chapter 8 Moth-Flame Optimization-Based Deep

Feature Selection for Cardiovascular Disease Detection Using ECG Signal

Arindam Majee, Shreya Bisw as, Somnath Chatterjee, Shibaprasad Sen, Seyedali
Mirjalili, and Ram Sarkar

Section III Hybrids and Improvements of Moth-Flame Optimization Algorithm

Chapter 9 Hybrid Moth-Flame Optimization Algorithm with Slime Mold
Algorithm for Global Optimization

Sukanta Nama, Sanjoy Chakraborty, Apu Kumar Saha, and Seyedali Mirjalili

Chapter 10 Hybrid Aquila Optimizer with Moth-Flame Optimization Algorithm
for Global Optimization

Laith Abualigah, Seyedali Mirjalili, Mohamed Abd Elaziz, Heming Jia, Canan
Batur ahin, Ala Khalifeh, and Amir H. Gandomi

Chapter 11 Boosting Moth-Flame Optimization Algorithm by Arithmetic
Optimization Algorithm for Data Clustering

Laith Abualigah, Seyedali Mirjalili, Mohamm ed Otair, Putra Sumari, Mohamed
Abd Elaziz, Heming Jia, and Amir H. Gandomi

Section IV Applications of Moth-Flame Optimization Algorithm

Chapter 12 Moth-Flame Optimization Algorithm, Arithmetic Optimization
Algorithm, Aquila Optimizer, Gray Wolf Optimizer, and Sine Cosine Algorithm:
A Comparative Analysis Using Multilevel Thresholding Image Segmentation
Problems

Laith Abualigah, Nada Khalil Al-Okbi, Seyedali Mirjalili, Mohamm ad
Alshinwan, Husam Al Hamad, Ahmad M. Khasawneh, Waheeb Abu-Ulbeh, Mohamed Abd
Elaziz, Heming Jia, and Amir H. Gandomi

Chapter 13 Optimal Design of Truss Structures with Continuous Variable
Using Moth-Flame Optimization

Nima Khodadadi, Seyed Mohamm ad Mirjalili, and Seyedali Mirjalili

Chapter 14 Deep Feature Selection Using Moth-Flame Optimization for Facial
Expression Recognition from Thermal Images

Ankan Bhattacharyya, Soumyajit Saha, Shibaprasad Sen, Seyedali Mirjalili, and
Ram Sarkar

Chapter 15 Design Optimization of Photonic Crystal Filter Using Moth-Flame
Optimization Algorithm

Seyed Mohamm ad Mirjalili, Somayeh Davar, Nima Khodadadi, and Seyedali
Mirjalili
Seyedali Mirjalili is a Professor at Torrens University Center for Artificial Intelligence Research and Optimization and internationally recognized for his advances in nature-inspired Artificial Intelligence (AI) techniques. He is the author of more than 300 publications including five books, 250 journal articles, 20 conference papers, and 30 book chapters. With more than 50,000 citations and H-index of 75, he is one of the most influential AI researchers in the world. From Google Scholar metrics, he is globally the most cited researcher in Optimization using AI techniques, which is his main area of expertise. Since 2019, he has been in the list of 1% highly-cited researchers and named as one of the most influential researchers in the world by Web of Science. In 2021, The Australian newspaper named him as the top researcher in Australia in three fields of Artificial Intelligence, Evolutionary Computation, and Fuzzy Systems. He is a senior member of IEEE and is serving as an editor of leading AI journals including Neurocomputing, Applied Soft Computing, Advances in Engineering Software, Computers in Biology and Medicine, Healthcare Analytics, and Applied Intelligence.