Muutke küpsiste eelistusi

E-raamat: Handbook of Optical and Laser Scanning

Edited by (Niles, Michigan, USA), Edited by (Lincoln Laser Company, Phoenix, Arizona, USA)
  • Formaat - PDF+DRM
  • Hind: 177,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Preface Optical and laser scanning is the controlled deflection of light, visible or invisible. The aim of Handbook of Optical and Laser Scanning is to provide engineers, scientists, managerial technologists, and students with a resource to be used as areference for understanding the fundamentals of optical scanning technology. This text has evolved from three previous books, Laser Beam Scanning (1985), Optical Scanning (1991), and Handbook of Optical and Laser Scanning (2004). Since their publication,many advances have occurred in optical scanning, requiring updating of previous material and introduction of additional scanning technologies. This new edition also adds a few chapters on scanning applications illustrating the practical use of scanning technology. Optical and laser scanning is a topic that is extremely broad in scope. It encompasses the mechanisms that control the deflection of light, optical systems that work with these mechanisms to perform scanning functions and factors that affect the fidelity of the images generated or obtained from the scanning systems. Each of these subtopics is addressed in this book from a variety of perspectives. A scanning system can be an input or output system or a combination of both. Input systems acquire images in either two or three dimensions. These systems can operate at a fixed wavelength or over a broad spectrum. They can reacquire the original light source by gathering either the specular or diffuse reflection or by fluorescing the image and acquiring the fluoresced light. Output systems direct light to produce images for applications such as marking, visual projection, and hard copy output. Ladar and many inspection systems use the same optical path to both illuminate the scene and acquire the image"--

"Revealing the fundamentals of light beam deflection control, factors in image fidelity and quality, and the newest technological developments currently impacting scanner system design and applications, this highly practical reference reviews elements oflaser beam characterization and describes optical systems for laser scanners. Featuring a logical chapter organization, authoritative yet accessible writing, hundreds of supporting illustrations, and contributions from 27 international subject specialists, this book affords a valuable range of perspectives as well as global coverage of optical and laser beam scanning. "--

Provided by publisher.

Arvustused

Praise for the Previous Edition

"This is a tremendous compendium of material, covering a relatively specialized field at a very considerable depth. It has 14 'chapters' written very authoritatively by 27 authors from the US, the UK and Japan. It contains current and up to date technology, and was edited by Gerald Marshall (also the author of Chap. 7), who is well known as one of the top experts in this field.

"The Handbook's extensive coverage of the entire range of topics would seem to include almost every aspect of the field of optical scanning. Here, one can find anything one might possibly want to know about scanners and scanning. As a few examples of the completeness of this book, there are sections on laser beam quality, lens design, bar codes, air bearings, Gaussian diffraction, and much, much more. Even the table of contents only hints at the extent of its coverage.

"The level of the book is high. Each chapter seems to be written by an expert in a specific sector of the field for an expert in the field. For example, I was very impressed by Chapter 2, 'Optical Systems for Laser Scanners' by Sagan. It can only be described as terrific. Even as an extremely experienced (60 years) lens designer, I enjoyed the many useful insights in Sagan's work. His chapter is very expert and very well written.

"Even in its very specialized field, the book is so wide-ranging that I doubt that any one individual can competently criticize all of the book; I certainly know that I can't. The book is overwhelming in the completeness and depth of its coverage.

"Surprisingly, I found something of interest, useful, and valuable in every chapter. Each is written for, if not exactly an expert, at least someone competent in the general broad field of which the chapter is a part, and it's written by someone who is obviously extremely competent in the specialty represented by the chapter. The material is basic, but it's far from being 'dumbed down'; one has to work to get the full benefit of the text. Appropriately enough, most chapters assume that the reader has a basic knowledge of the field. The chapters that I am competent to critique are excellent, well and expertly written."

Warren J. Smith, Chief Scientist Emeritus, Kaiser Electro-Optics

"There are not many handbooks available in optical and laser scanning that contain the up-to-date research work in this field. This handbook is a timely addition to the current literature on optical and laser scanning. Editor Gerald F. Marshall has done a great job inputting together the excellent work of specialists, in the field of optical and laser beam scanning, from around the worldEach chapter has a good number of supporting figures as well as an extensive reference list at the end. The books language is simple and easy to understand the complexity of the subject. Readers will find this book as a useful introduction source to the rapid changing field of optical and laser scanning. This handbook can be a good addition to the academic as well as professional libraries and can serve as a valuable reference for those involved in the optical and laser scanning."

E-Streams, Vol. 8, No. 6/7, June/July 2005

"It covers every conceivable aspect of optical and laser scanning and much more.Optics, mechanics and electronics are presented clearly and comprehensively. References are included at the end of each article. An index appears at the end of the book, together with a short glossary of 60 of the most important terms in the field. Among the several available books devoted to scanning, this one is certainly the most complete."

Optics & Photonics News, April 2006

Preface ix
Preface to Laser Beam Scanning (1985) xi
Preface to Optical Scanning (1991) xiii
Preface to Handbook of Optical and Laser Scanning (2004) xv
Cover Image xvii
Acknowledgments xix
Editors xxi
Contributors xxiii
1 Characterization of Laser Beams: The M2 Model
1(68)
Thomas F. Johnston
Michael W. Sasnett
1.1 Introduction
2(1)
1.2 Historical Development of Laser-Beam Characterization
3(1)
1.3 Organization of This
Chapter
4(1)
1.4 The M2 Model for Mixed-Mode Beams
5(11)
1.4.1 Pure Transverse Modes: The Hermite-Gaussian and Laguerre-Gaussian Functions
5(3)
1.4.2 Mixed Modes: The Incoherent Superposition of Pure Modes
8(1)
1.4.3 Properties of the Fundamental Mode Related to the Beam Diameter
9(2)
1.4.4 Propagation Properties of the Fundamental-Mode Beam
11(2)
1.4.5 Propagation Properties of the Mixed-Mode Beam: The Embedded Gaussian and the M2 Model
13(3)
1.5 Transformation by a Lens of Fundamental and Mixed-Mode Beams
16(4)
1.5.1 Application of the Beam-Lens Transform to the Measurement of Divergence
18(1)
1.5.2 Applications of the Beam-Lens Transform: The Limit of Tight Focusing
19(1)
1.5.3 The Inverse Transform Constant
20(1)
1.6 Beam Diameter Definitions for Fundamental and Mixed-Mode Beams
20(17)
1.6.1 Determining Beam Diameters from Irradiance Profiles
20(2)
1.6.2 General Considerations in Obtaining Useable Beam Profiles
22(4)
1.6.2.1 How Commercial Scanning Aperture Profilers Work
26(1)
1.6.3 Comparing the Five Common Methods for Defining and Measuring Beam Diameters
27(1)
1.6.3.1 Dpin, Separation of 1/e2 Clip Points of a Pinhole Profile
27(1)
1.6.3.2 Dslit, Separation of 1/e2 Clip Points of a Slit Profile
28(1)
1.6.3.3 Dke, Twice the Separation of the 15.9% and 84.1% Clip Points of a Knife-Edge Scan
28(1)
1.6.3.4 D86, Diameter of a Centered Circular Aperture Passing 86.5% of the Total Beam Power
28(1)
1.6.3.5 D4σ, Four Times the Standard Deviation of the Pinhole Irradiance Profile
29(1)
1.6.3.6 Sensitivity of D4σ to the Signal-to-Noise Ratio of the Profile
30(1)
1.6.3.7 Reasons for D4σ Being the ISO Choice of Standard Diameter
31(1)
1.6.3.8 Diameter Definitions: Final Note
32(1)
1.6.4 Conversions between Diameter Definitions
33(1)
1.6.4.1 Is M2 Unique?
33(1)
1.6.4.2 Emprical Basis for the Conversion Rules
33(2)
1.6.4.3 Rules for Converting Diameters between Different Definitions
35(2)
1.7 Practical Aspects of Beam Quality M2 Measurement: The Four-Cuts Method
37(8)
1.7.1 The Logic of the Four-Cuts Method
39(1)
1.7.1.1 Requirement of an Auxiliary Lens to Make an Accessible Waist
39(2)
1.7.1.2 Accuracy of the Location Found for the Waist
41(1)
1.7.2 Graphical Analysis of the Data
41(2)
1.7.3 Discussion of Curve-Fit Analysis of the Data
43(1)
1.7.4 Commercial Instruments and Software Packages
44(1)
1.8 Types of Beam Asymmetry
45(7)
1.8.1 Common Types of Beam Asymmetry
46(2)
1.8.2 The Equivalent Cylindrical Beam Concept
48(3)
1.8.3 Other Beam Asymmetries: Twisted Beams, General Astigmatism
51(1)
1.9 Applications of The M2 Model to Laser Beam Scanners
52(8)
1.9.1 A Stereolithography Scanner
52(2)
1.9.2 Conversion to a Consistent Knife-Edge Currency
54(1)
1.9.3 Why Use a Multimode Laser?
54(1)
1.9.4 How to Read the Laser Test Report
55(1)
1.9.5 Replacing the Focusing Beam Expander with an Equivalent Lens
55(2)
1.9.6 Depth of Field and Spot-Size Variation at the Scanned Surface
57(1)
1.9.7 Laser Specifications to Limit Spot Out-of-Roundness on the Scanned Surface
57(1)
1.9.7.1 Case A: 10% Waist Asymmetry
57(1)
1.9.7.2 Case B: 10% Divergence Asymmetry
58(1)
1.9.7.3 Case C: 12% Out-of-Roundness across the Scanned Surface Due to Astigmatism
59(1)
1.10 Conclusion: Overview of The M2 Model
60(10)
Acknowledgments
61(1)
Glossary
62(4)
References
66(4)
2 Optical Systems for Laser Scanners
69(64)
Stephen F. Sagan
2.1 Introduction
70(1)
2.2 Laser Scanner Configurations
71(1)
2.2.1 Objective Scanning
71(1)
2.2.2 Post-objective Scanning
72(1)
2.2.3 Pre-objective Scanning
72(1)
2.3 Optical Design and Optimization: Overview
72(2)
2.4 Optical Invariants
74(5)
2.4.1 The Diffraction Limit
76(1)
2.4.2 Real Gaussian Beams
76(1)
2.4.3 Truncation Ratio
77(2)
2.5 Performance Issues
79(5)
2.5.1 Image Irradiance
79(1)
2.5.2 Image Quality
79(2)
2.5.3 Resolution and Number of Pixels
81(1)
2.5.4 Depth of Focus Considerations
81(2)
2.5.5 The F-Θ Condition
83(1)
2.6 First- and Third-Order Considerations
84(9)
2.6.1 Correction of First-Order Chromatic Aberrations
87(1)
2.6.2 Properties of Third-Order Aberrations
88(1)
2.6.2.1 Spherical Aberration
89(1)
2.6.2.2 Coma
89(1)
2.6.2.3 Astigmatism
89(1)
2.6.2.4 Distortion
90(1)
2.6.3 Third-Order Rules of Thumb
91(1)
2.6.4 Importance of the Petzval Radius
92(1)
2.7 Special Design Requirements
93(7)
2.7.1 Galvanometer Scanners
93(1)
2.7.2 Polygon Scanning
94(1)
2.7.2.1 Bow
94(1)
2.7.2.2 Beam Displacement
94(1)
2.7.2.3 Cross-Scan Errors
94(3)
2.7.2.4 Summary
97(1)
2.7.3 Polygon Scan Efficiency
98(1)
2.7.4 Internal Drum Systems
99(1)
2.7.5 Holographic Scanning Systems
100(1)
2.8 Lens Design Models
100(12)
2.8.1 Anatomy of a Simple Scan Lens Design
101(5)
2.8.2 Multiconfiguration Using Tilted Surfaces
106(2)
2.8.3 Multiconfiguration Reflective Polygon Model
108(1)
2.8.4 Example Single-Pass Polygon Setup
109(1)
2.8.4.1 Multiconfiguration Code V Lens Prescription
110(1)
2.8.4.2 Lens Prescription Model
111(1)
2.8.5 Dual-Axis Scanning
112(1)
2.9 Selected Laser Scan Lens Designs
112(6)
2.9.1 A 300 DPI Office Printer Lens (λ = 633 nm)
113(1)
2.9.2 Wide-Angle Scan Lens (λ = 633 nm)
114(1)
2.9.3 Semiwide Angle Scan Lens (λ = 633 nm)
114(1)
2.9.4 Moderate Field Angle Lens with Long Scan Line (λ = 633 nm)
115(1)
2.9.5 Scan Lens for Light-Emitting Diode (λ = 800 nm)
116(1)
2.9.6 High-Precision Scan Lens Corrected for Two Wavelengths (λ = 1064 and 950 nm)
116(1)
2.9.7 High-Resolution Telecentric Scan Lens (λ = 408 nm)
117(1)
2.10 Scan Lens Manufacturing, Quality Control, and Final Testing
118(1)
2.11 Holographic Laser Scanning Systems
118(4)
2.11.1 Scanning with a Plane Linear Grating
119(1)
2.11.2 Line Bow and Scan Linearity
120(1)
2.11.3 Effect of Scan Disc Wobble
121(1)
2.12 Noncontact Dimensional Measurement System Using Holographic Scanning
122(7)
2.12.1 Speed, Accuracy, and Reliability Issues
124(1)
2.12.2 Optical System Configuration
125(2)
2.12.3 Optical Performance
127(2)
2.13 Holographic Laser Printing Systems
129(2)
2.14 Closing Comments
131(4)
Acknowledgments
131(1)
References
132(3)
3 Image Quality for Scanning and Digital Imaging Systems
133(114)
Donald R. Lehmbeck
John C. Urbach
3.1 Introduction
135(5)
3.1.1 Imaging Science for Scanned Imaging Systems
135(1)
3.1.1.1 Scope
135(1)
3.1.1.2 The Literature
136(1)
3.1.1.3 Types of Scanners
136(1)
3.1.2 The Context for Scanned Image Quality Evaluation
137(3)
3.2 Basic Concepts and Effects
140(26)
3.2.1 Fundamental Principles of Digital Imaging
140(1)
3.2.1.1 Structure of Digital Images
140(5)
3.2.1.2 The Sampling Theorem and Spatial Relationships
145(3)
3.2.1.3 Gray Level Quantization: Some Limiting Effects
148(4)
3.2.2 Basic System Effects
152(1)
3.2.2.1 Blur
152(1)
3.2.2.2 System Response
153(2)
3.2.2.3 Halftone System Response
155(4)
3.2.2.4 Noise
159(1)
3.2.2.5 Color Imaging
160(6)
3.3 Practical Considerations
166(8)
3.3.1 Scan Frequency Effects
166(3)
3.3.2 Placement Errors or Motion Defects
169(4)
3.3.3 Other Nonuniformities
173(1)
3.3.3.1 Perception of Periodic Nonuniformities in Color Separation Images
173(1)
3.4 Characterization of Input Scanners that Generate Multilevel Gray Signals (Including Digital Cameras)
174(19)
3.4.1 Tone Reproduction and Large Area Systems Response
175(6)
3.4.2 MTF and Related Blur Metrics
181(2)
3.4.2.1 MTF Approaches
183(6)
3.4.2.2 The Human Visual System's Spatial Frequency Response
189(1)
3.4.2.3 Electronic Enhancement of MTFs: Sharpness Improvement
189(1)
3.4.3 Noise Metrics
190(3)
3.5 Evaluating binary, thresholded, scanned imaging systems
193(9)
3.5.1 Importance of Evaluating Binary Scanning
193(1)
3.5.1.1 Angled Lines and Line Arrays
193(1)
3.5.2 General Principles of Threshold Imaging Tone Reproduction and Use of Gray Wedges
194(1)
3.5.2.1 Underlying Characteristic Curve and Noise
194(1)
3.5.3 Binary Imaging Metrics Relating to MTF and Blur
195(1)
3.5.3.1 Resolving Power (A Measure for Discrimination of Fine Detail)
195(3)
3.5.3.2 Line Imaging Interactions
198(1)
3.5.4 Binary Metrics Relating to Noise Characteristics
198(1)
3.5.4.1 Gray Wedge Noise
198(1)
3.5.4.2 Line Edge Noise Range Metric
199(1)
3.5.4.3 Noise in Halftoned or Screened Digital Images
200(2)
3.6 Summary Measures of Imaging Performance
202(12)
3.6.1 Basic Signal-to-Noise Ratio
202(2)
3.6.2 Detective Quantum Efficiency and Noise Equivalent Quanta
204(1)
3.6.3 Application-Specific Context
204(1)
3.6.4 Modulation Requirement Measures
204(1)
3.6.5 Area under the MTF Cure (MTFA) and Square Root Integral (SQRI)
205(1)
3.6.6 Measures of Subjective Quality
206(3)
3.6.7 Information Content and Information Capacity
209(5)
3.7 Specialized Image Processing
214(5)
3.7.1 Lossy Compression
214(2)
3.7.2 Nonlinear Enhancement and Restoration of Digital Images
216(2)
3.7.3 Color Management
218(1)
3.8 Psychometric Measurement Methods Used to Evaluate Image Quality
219(7)
3.8.1 Relationships between Psychophysics, Customer Research, and Psychometric Scaling
219(1)
3.8.2 Psychometric Methods
220(1)
3.8.3 Scaling Techniques
221(1)
3.8.3.1 Identification (Nominal)
222(1)
3.8.3.2 Rank Order (Ordinal)
222(1)
3.8.3.3 Category (Nominal, Ordinal, Interval)
222(1)
3.8.3.4 Graphical Rating (Interval)
222(1)
3.8.3.5 Paired Comparison (Ordinal, Interval, Ratio)
222(1)
3.8.3.6 Partition Scaling (Interval)
223(1)
3.8.3.7 Magnitude Estimation (Interval, Ratio)
223(1)
3.8.3.8 Ratio Estimation (Ratio)
223(1)
3.8.3.9 Semantic Differential (Ordinal, Interval)
223(1)
3.8.3.10 Likert Method (Ordinal)
223(1)
3.8.3.11 Hybrids (Ordinal, Interval, Ratio)
224(1)
3.8.4 Practical Experimental Matters Including Statistics
224(2)
3.9 Reference Data and Charts
226(22)
Acknowledgments
237(1)
References
238(10)
4 Polygonal Scanners: Components, Performance, and Design
247(34)
Glenn E. Stutz
4.1 Introduction
248(1)
4.2 Types of Scanning Mirrors
248(4)
4.2.1 Prismatic Polygonal Scanning Mirrors
249(1)
4.2.2 Pyramidal Polygonal Scanning Mirrors
250(1)
4.2.3 "Monogons"
250(1)
4.2.4 Irregular Polygonal Scanning Mirrors
250(2)
4.3 Materials
252(1)
4.4 Polygonal Mirror Fabrication Techniques
253(2)
4.4.1 Conventional Polishing
253(1)
4.4.2 Single Point Diamond Turning
254(1)
4.4.3 Polishing versus Diamond Turning
254(1)
4.5 Polygon Specifications
255(5)
4.5.1 Facet-to-Facet Angle Variance
256(1)
4.5.2 Pyramidal Error
256(1)
4.5.3 Facet-to-Axis Variance
256(1)
4.5.4 Facet Radius
257(1)
4.5.5 Surface Figure
258(1)
4.5.6 Surface Quality and Scatter
258(2)
4.6 Thin Film Coatings
260(2)
4.7 Motors and Bearing Systems
262(2)
4.7.1 Pneumatic Drives
262(1)
4.7.2 Hysteresis Synchronous Motors
262(1)
4.7.3 Brushless DC Motors
263(1)
4.7.4 Bearing Types
263(1)
4.8 Scanner Specifications
264(4)
4.8.1 Dynamic Track
265(1)
4.8.2 Jitter and Speed Stability
266(1)
4.8.3 Balance
266(1)
4.8.4 Perpendicularity
267(1)
4.8.5 Time to Synchronization
268(1)
4.9 Scanner Cost Drivers
268(1)
4.10 System Design Considerations
269(3)
4.11 Polygon Size Calculation
272(2)
4.12 Minimizing Image Defects in Scanning Systems
274(4)
4.12.1 Banding
274(2)
4.12.2 Litter
276(1)
4.12.3 Scatter and Ghost Images
276(1)
4.12.4 Intensity Variation
277(1)
4.12.5 Distortion
277(1)
4.12.6 Bow
278(1)
4.13 Summary
278(4)
Acknowledgments
278(1)
References
278(4)
5 Motors and Controllers (Drivers) for High-Performance Polygonal Scanners
281(38)
Emery Erdelyi
Gerald A. Rynkowski
5.1 Introduction
282(1)
5.2 Polygonal Scanner Basics
282(6)
5.2.1 Polygon Configurations
282(3)
5.2.2 Polygon Rotation and Scan Angle Relationship
285(1)
5.2.3 Polygon Speed Considerations
286(2)
5.3 Case Study: A Film Recording System
288(4)
5.3.1 System Performance Requirements
289(1)
5.3.2 Spinner Parameters
290(1)
5.3.3 Scanner Specification Tolerances
290(2)
5.3.4 High-Performance, Defined
292(1)
5.4 Motor Considerations
292(14)
5.4.1 Motor Requirements
292(2)
5.4.2 Hysteresis Synchronous Motor
294(4)
5.4.3 Brushless DC Motor Characteristics
298(1)
5.4.3.1 Torque and Winding Characteristics
299(1)
5.4.3.2 Brushless Motor Circuit Model
299(3)
5.4.3.3 Winding Configurations
302(1)
5.4.3.4 Commutation Sensor Timing and Alignment
303(1)
5.4.3.5 Rotor Configurations
303(3)
5.5 Control System Design
306(4)
5.5.1 AC Synchronous Motor Control
306(1)
5.5.2 DC Brushless Motor Control
307(3)
5.6 Application Examples
310(7)
5.6.1 Military Vehicle Thermal Imager Scanner
310(1)
5.6.2 Battery-Powered Thermal Imager Scanner
311(2)
5.6.3 High-Speed Single-Faceted Scanner
313(1)
5.6.4 Versatile Single Board Controller and Driver
314(3)
5.7 Conclusions
317(3)
Acknowledgments
317(1)
References
318(2)
6 Bearings for Rotary Scanners
319(40)
Chris Gerrard
6.1 Introduction
320(1)
6.2 Bearing Types for Rotary Scanners
320(1)
6.2.1 Gas-Lubricated Bearings
321(1)
6.2.2 Oil-Lubricated Bearings
321(1)
6.2.3 Magnetic Bearings
321(1)
6.2.4 Ball Bearings
321(1)
6.3 Bearing Selection
321(1)
6.4 Gas Bearings
322(29)
6.4.1 Background
322(2)
6.4.2 Fundamentals
324(1)
6.4.2.1 Low Heat Generation
324(1)
6.4.2.2 Wide Temperature Range
325(1)
6.4.2.3 Noncontamination of Environment
325(1)
6.4.2.4 Repeatability of Smoothness
326(1)
6.4.2.5 Accuracy of Rotation
326(1)
6.4.2.6 Noise and Vibration
326(1)
6.4.3 Aerostatic Bearings
326(1)
6.4.3.1 Aerostatic Journal Bearing
327(3)
6.4.3.2 Aerostatic Thrust Bearing
330(3)
6.4.3.3 Aerostatic Scanner Construction
333(2)
6.4.4 Aerodynamic Bearings
335(2)
6.4.4.1 Spiral Groove Bearings
337(1)
6.4.4.2 Lobed Bearings/Shaft
338(2)
6.4.4.3 Spindle Construction
340(1)
6.4.5 Hybrid Gas Bearings
341(1)
6.4.6 Bearing and Shaft Dynamics
342(1)
6.4.6.1 Synchronous Whirls
342(1)
6.4.6.2 Half-Speed Whirl
343(1)
6.4.6.3 Shaft Natural Frequency
343(1)
6.4.6.4 Shaft Balance
343(1)
6.4.7 Shaft Assembly
344(1)
6.4.7.1 Optics and Holders
345(4)
6.4.7.2 Motors
349(1)
6.4.7.3 Encoders
350(1)
6.5 Ball Bearings
351(3)
6.5.1 Bearing Design
351(2)
6.5.2 Scanner Construction
353(1)
6.6 Magnetic Bearings
354(1)
6.6.1 Bearing Design Principle
354(1)
6.6.2 Scanner Construction
354(1)
6.7 Optical Scanning Errors
355(2)
6.7.1 Bearing-Related Errors
355(1)
6.7.2 Optic-Related Errors
356(1)
6.7.2.1 Polygons
356(1)
6.7.2.2 Monogons
356(1)
6.7.3 Error Correction
357(1)
6.7.3.1 Polygons
357(1)
6.7.3.2 Monogons
357(1)
6.8 Summary
357(3)
Acknowledgments
358(1)
References
358(2)
7 Pre-Objective Polygonal Scanning
359(34)
Gerald F. Marshall
7.1 Introduction
360(1)
7.1.1 Equations and Coordinates of a Polygonal Scanning System
361(1)
7.1.2 Instantaneous Center-of-Scan (ICS)
361(1)
7.1.3 Stationary Ghost Images Outside the Image Format
361(1)
7.2 Equations and Coordinates of a Polygonal Scanning System
361(10)
7.2.1 Objective
362(1)
7.2.2 Midposition and Scan-Axis
362(1)
7.2.3 Mirror Facet Angle A
362(1)
7.2.4 Mirror Facet Width
362(1)
7.2.5 Beam Width (Diameter) D
362(1)
7.2.6 Scan Duty Cycle (Scan Efficiency)
363(1)
7.2.7 Sag Dimensions
364(1)
7.2.8 Coordinates of G
365(1)
7.2.9 Coordinates of P
366(1)
7.2.10 Optical Axis of the Objective Lens
367(1)
7.2.11 Equations
368(1)
7.2.11.1 Scan-Axis PU
368(1)
7.2.11.2 Objective Lens Optical Axis
368(1)
7.2.11.3 Incident Beam Axis Through GP
369(1)
7.2.11.4 Mirror Facet Bisector and Normal
369(1)
7.2.12 Insights from an Alternative Analytical Approach
369(1)
7.2.13 Features of Figure 7.4
370(1)
7.2.14 Conclusion
371(1)
7.3 Instantaneous Center-of-Scan
371(9)
7.3.1 Objective
372(1)
7.3.2 Locus of the Instantaneous Center-of-Scan
372(1)
7.3.3 Midposition and Scan-Axis
373(1)
7.3.4 Derivation of the Instantaneous Center-of-Scan Coordinates
373(2)
7.3.5 Solutions
375(1)
7.3.6 Spreadsheet Program
376(2)
7.3.7 Instantaneous Center-of-Scan
378(1)
7.3.8 Locus of P
379(1)
7.3.9 Offset Angle Limits
379(1)
7.3.10 Finite Beam Width D
379(1)
7.3.11 Commentary
380(1)
7.3.12 Conclusion
380(1)
7.4 Stationary Ghost Images Outside the Image Format
380(14)
7.4.1 Objective
380(1)
7.4.2 Stationary Ghost Images
380(1)
7.4.3 Facet Angle A
381(1)
7.4.4 Facet-to-Facet Tangential Angle
381(1)
7.4.5 Scan-Axis
381(1)
7.4.6 Offset Angle 2β
381(1)
7.4.7 Midposition
381(1)
7.4.8 Scan Duty Cycle (Scan Efficiency) η
381(1)
7.4.9 Rotation Axis Offset Distance
382(1)
7.4.10 Choosing an Incident Beam Offset Angle 2β
383(1)
7.4.11 Ghost Beams gh and Images GH
383(1)
7.4.12 Ghost Beam Field Angles φ
383(1)
7.4.13 Incident Beam Location
383(1)
7.4.14 Image Format Scan Duty Cycle ηω
384(1)
7.4.15 Incident Beam Offset Angle 27°
384(1)
7.4.16 Incident Beam Offset Angle 52°
385(1)
7.4.17 Incident Beam Offset Angle 92°
385(2)
7.4.18 Incident Beam Offset Angle 124°
387(1)
7.4.19 Ghost Images Inside the Image Format
388(1)
7.4.20 Ghost Images Outside the Image Format
388(1)
7.4.21 Number of Facets
388(2)
7.4.22 Diameters of Scanner and Objective Lens
390(1)
7.4.23 Commentary
390(1)
7.4.24 Conclusion
390(1)
Acknowledgments
390(1)
References
390(4)
8 Galvanometric and Resonant Scanners
393(56)
Jean Montagu
8.1 Introduction
394(2)
8.1.1 Historical Developments
395(1)
8.2 Component and Design Issues
396(34)
8.2.1 Galvanometric Scanners
396(1)
8.2.1.1 Moving Magnet Torque Motor
396(7)
8.2.1.2 Position Transducer
403(3)
8.2.1.3 Bearings
406(4)
8.2.1.4 Mirrors
410(5)
8.2.1.5 Image Distortions
415(3)
8.2.1.6 Dynamic Performances
418(8)
8.2.1.7 Evaluation Parameters
426(1)
8.2.2 Resonant Scanners
427(1)
8.2.2.1 New Designs
427(1)
8.2.2.2 Suspension
428(1)
8.2.2.3 Induced Moving Coil
428(2)
8.3 Scanning Systems
430(9)
8.3.1 Scanning Architectures
430(1)
8.3.1.1 Post-objective Scanning
430(1)
8.3.1.2 Pre-objective Scanning
431(1)
8.3.1.3 Flying Objective Scanning
431(1)
8.3.2 Two-Axis Beam Steering Systems
431(1)
8.3.2.1 Single-Mirror TABS
431(1)
8.3.2.2 Relay Lens TABS
432(1)
8.3.2.3 Classic Two-Mirror Construction
432(2)
8.3.2.4 Paddle Scanner Two-Mirror Configuration
434(2)
8.3.2.5 Golf Club Two-Mirror Configuration
436(3)
8.3.2.6 TABS with Three Moving Optical Elements
439(1)
8.4 Driver Amplifier
439(1)
8.5 Scanning Applications
440(5)
8.5.1 Material Processing
440(1)
8.5.2 Microscopy
441(1)
8.5.2.1 Pre-objective Scanning
442(1)
8.5.2.2 The Marvin Minsky Confocal Microscope
443(1)
8.5.2.3 Flying Objective Scanning Microscope
443(1)
8.5.2.4 Rectilinear Flying Objective Microscope
443(1)
8.5.2.5 Rotary Flying Objective Microscope
444(1)
8.6 Conclusions
445(5)
Acknowledgments
445(1)
Glossary
445(3)
References
448(2)
9 Flexural Pivots for Oscillatory Scanners
449(36)
David C. Brown
9.1 Introduction
450(4)
9.1.1 Introduction to Macroscale Flexure Pivots
451(3)
9.2 Flexure Design
454(8)
9.2.1 Useful Formulas
454(2)
9.2.2 Flexure Materials
456(3)
9.2.3 Stress Risers
459(1)
9.2.4 Corrosion
460(2)
9.3 Flexure Manufacturing
462(2)
9.3.1 Manufacturing the Material
462(1)
9.3.2 Cutting Out the Flexures
463(1)
9.3.3 Corrosion Protectio
463(1)
9.4 Flexure Mounting
464(2)
9.5 Crossed-Axis Flexure Pivots
466(4)
9.5.1 General Introduction
466(1)
9.5.2 The Bendix Pivot
467(1)
9.5.3 Cambridge Technology Crossed-Flexure Design Example
468(2)
9.6 Low-Cost Cantilever Scanner
470(4)
9.6.1 General Features
471(2)
9.6.2 Design example
473(1)
9.6.3 Motor Size Required
474(1)
9.7 Vibrating-Wire Scanner
474(1)
9.8 Microelectromechanical Flexure Scanners
474(9)
9.8.1 MEMS Design
475(2)
9.8.2 MEMS Manufacture
477(1)
9.8.3 Operation of the Scanner
477(2)
9.8.4 Material Properties
479(1)
9.8.5 Static Performance
480(1)
9.8.5.1 Hysteresis
480(1)
9.8.5.2 Linearity
480(1)
9.8.5.3 Uniformity
480(1)
9.8.5.4 Yield
481(1)
9.8.6 Dynamic Performance
481(1)
9.8.6.1 Dynamics
481(1)
9.8.6.2 Life
481(1)
9.8.6.3 Degradation Processes
481(1)
9.8.7 Application Rules
481(1)
9.8.7.1 When and When Not to Use MEMS
481(1)
9.8.8 Anticipated Developments
482(1)
9.8.9 Conclusions
482(1)
9.9 Conclusion
483(3)
Acknowledgments
483(1)
References
483(3)
10 Holographic Barcode Scanners: Applications, Performance, and Design
485(40)
LeRoy D. Dickson
Timothy A. Good
10.1 Introduction
486(5)
10.1.1 The UPC Code
486(3)
10.1.2 Other Barcodes
489(1)
10.1.3 Barcode Properties
490(1)
10.2 Nonholographic UPC Scanners
491(5)
10.2.1 Forward-Looking Scanners
493(1)
10.2.2 Scan Pattern Wraparound
494(1)
10.2.3 Depth of Field
495(1)
10.3 Holographic Barcode Scanners
496(7)
10.3.1 What is a Holographic Deflector?
496(3)
10.3.2 Novel Properties of Holographic Barcode Scanning
499(1)
10.3.3 Depth of Field for a Conventional Optics Barcode Scanner
500(2)
10.3.4 Depth of Field for a Holographic Barcode Scanner
502(1)
10.4 Other Features of Holographic Scanning
503(6)
10.4.1 Overlapping Focal Zones
504(1)
10.4.2 Variable Light-Collection Aperture
505(1)
10.4.3 Facet Identification and Scan Tracking
506(1)
10.4.4 Scan-Angle Multiplication
507(2)
10.5 Holographic Deflector Media for Holographic Barcode Scanners
509(5)
10.5.1 Surface Relief Phase Media
510(1)
10.5.2 Volume Phase Media
511(3)
10.6 Fabrication of Holographic Deflectors
514(4)
10.6.1 The DCG Holographic Disc
514(3)
10.6.2 The Mechanically Replicated Surface-Relief Holographic Disc
517(1)
10.7 An Example of a Holographic Barcode Scanner: The Metrologic Penta Scanner
518(8)
10.7.1 The Penta Scan Pattern
518(2)
10.7.2 The Penta Scanning Mechanism
520(2)
References
522(4)
11 Acousto-Optic Scanners and Modulators
525(68)
Reeder N. Ward
Mark T. Montgomery
Milton Gottlieb
11.1 Introduction
526(1)
11.2 Acousto-Optic Interactions
527(16)
11.2.1 The Photoelastic Effect
527(1)
11.2.2 Isotropic AO Interaction
528(8)
11.2.3 Anisotropic Diffraction
536(7)
11.3 Acousto-Optic Modulator and Deflector Design
543(8)
11.3.1 Resolution and Bandwidth Considerations
543(2)
11.3.2 Interaction Bandwidth
545(3)
11.3.3 Deflector Design Procedure
548(1)
11.3.4 Modulator Design Procedure
549(2)
11.4 Specialized Acousto-Optic Devices for Scanning
551(4)
11.4.1 Acoustic Traveling Wave Lens
551(1)
11.4.1.1 Design Considerations
551(2)
11.4.2 Chirp Lens
553(1)
11.4.3 Multichannel Acousto-Optic Modulator
554(1)
11.5 Materials for Acousto-Optic Devices
555(5)
11.5.1 General Considerations
555(1)
11.5.2 Theoretical Guidelines
556(2)
11.5.3 Selected Materials for Acousto-Optic Scanners
558(2)
11.6 Acoustic Transducer Design
560(13)
11.6.1 Transducer Characteristics
560(4)
11.6.2 Transducer Materials
564(2)
11.6.3 Array Transducers
566(7)
11.7 Acousto-Optic Device Fabrication
573(5)
11.7.1 Cell Fabrication
573(1)
11.7.2 Transducer Bonding
574(3)
11.7.3 Packaging
577(1)
11.8 Applications of Acousto-Optic Scanners
578(13)
11.8.1 Multichannel Acousto-Optic Modulator for Polygonal Scanner
578(2)
11.8.2 Infrared Laser Scanning
580(1)
11.8.3 Two-Stage Acousto-Optic Scanner
581(1)
11.8.3.1 Scanner Optics
582(2)
11.8.3.2 Driver
584(1)
11.8.4 Applications of Acousto-Optic Devices and Acousto-Optic Tunable Filters
584(1)
11.8.4.1 Acousto-Optic Modulators
585(1)
11.8.4.2 Acousto-Optic Deflectors
585(2)
11.8.4.3 Acousto-Optic Frequency Shifters
587(1)
11.8.4.4 Acousto-Optic Tunable Filters
588(2)
11.8.4.5 Acousto-Optic Wavelength Selectors
590(1)
11.8.4.6 Polychromatic Acousto-Optic Modulators
591(1)
11.9 Conclusions
591(3)
Acknowledgments
591(1)
References
591(3)
12 Electro-Optical Scanners
593(44)
Timothy K. Deis
Daniel D. Stancil
Carl E. Conti
12.1 Introduction
594(2)
12.2 Theory of the Electro-Optic Effect
596(2)
12.2.1 The Electro-Optic Effect
596(1)
12.2.2 The Linear Electro-Optic Effect
597(1)
12.2.3 The Quadratic Electro-Optic Effect
597(1)
12.3 Principal Types of Electro-Optic Deflectors
598(23)
12.3.1 Basic Topologies
598(1)
12.3.2 Terminology for Describing Electro-Optic Scanners
598(1)
12.3.2.1 Beam Displacement and Deflection Angle
598(1)
12.3.2.2 Pivot Point
599(1)
12.3.2.3 Resolvable Spots
600(1)
12.3.3 Single Elements and Assemblies of Single Elements
601(1)
12.3.4 Shaped Fields
602(1)
12.3.4.1 Graded Index with Uniform Applied Voltage
603(2)
12.3.4.2 Graded Index with Constant Spacing
605(1)
12.3.4.3 Graded Index with Constant Spacing and Single Voltage
606(1)
12.3.5 Poled Structures
606(2)
12.3.5.1 Prismatic Poled Structures
608(1)
12.3.5.2 Rectangular Scanners
609(3)
12.3.5.3 Trapezoidal Scanners
612(2)
12.3.5.4 Horn-Shaped Scanners
614(3)
12.3.5.5 Domain Inverted Total Internal Reflection Deflectors
617(1)
12.3.5.6 Domain Inverted Grating Structures
617(2)
12.3.5.7 Other Poled Structures
619(2)
12.4 Electronic Drivers for Electro-Optic Deflectors
621(7)
12.4.1 Overview
621(1)
12.4.2 High-Voltage Power Supplies
621(1)
12.4.2.1 Conventional Boost Converters
622(1)
12.4.2.2 Flyback Converters
622(1)
12.4.3 Digital Drivers
623(1)
12.4.3.1 Simple Totem Pole Circuits
623(2)
12.4.3.2 Adiabatic Drivers
625(2)
12.4.4 Analog Drivers
627(1)
12.5 Properties and Selection of Electro-Optic Materials
628(5)
12.5.1 General
628(1)
12.5.2 ADP, KDP, and Related Isomorphs
629(1)
12.5.3 Lithium Niobate and Related Materials
630(1)
12.5.4 Potassium Titanyl Phosphate (KTP)
631(1)
12.5.5 Other Materials
631(1)
12.5.5.1 AB-Type Binary Compounds
631(1)
12.5.5.2 Kerr Effect in Liquids
631(1)
12.5.5.3 Electro-Optic Ceramics in the (Pb, La)(Zr, Ti)O3 System
631(1)
12.5.5.4 Other Materials
632(1)
12.5.6 Material Selection
632(1)
12.6 Electro-Optic Deflection System Design Process
633(1)
12.7 Conclusions
634(3)
Acknowledgments
634(1)
References
634(3)
13 Piezo Scanning
637(32)
Jim Litynski
Andreas Blume
13.1 Introduction
637(1)
13.2 Structure and Design
638(4)
13.3 Temperature Effects
642(1)
13.4 Properties of Motion
643(2)
13.5 Properties of Stack-Flexure Structures
645(3)
13.6 Electrical Drives
648(1)
13.6.1 Noise
648(1)
13.6.2 Current
648(1)
13.7 Reliability
649(1)
13.8 Tilting Stage Design
650(1)
13.9 Linear Stage Design
651(3)
13.9.1 Cross talk
651(1)
13.9.2 Minimizing Cross talk
652(1)
13.9.3 Increasing stiffness
653(1)
13.10 Damping
654(4)
13.11 Closed Loop Systems
658(1)
13.12 Strain Gages
658(3)
13.13 Capacitive Sensors
661(1)
13.14 Electronic Control Architecture For Closed Loop Systems
662(4)
13.15 Conclusion
666(4)
References
666(4)
14 Optical Disk Scanning Technology
669(44)
Tetsuo Saimi
14.1 Introduction
670(3)
14.1.1 Progress in Optical Disk Technology
670(1)
14.1.2 Characteristics of Optical Disks
671(1)
14.1.3 Principles of Optical Read/Write
671(2)
14.2 Applications of Optical Disk Systems
673(6)
14.2.1 Read-Only Optical Disk Systems
673(1)
14.2.1.1 Video Disk
674(1)
14.2.1.2 CD/CD-ROM
674(1)
14.2.1.3 DVD
674(1)
14.2.2 Write-Once Disk Systems
674(1)
14.2.2.1 CD-R
675(1)
14.2.3 Erasable Optical Disk Systems
675(1)
14.2.3.1 PCR Disk
675(1)
14.2.3.2 MO Disk
675(4)
14.3 Basic Design of Optical Disk Systems
679(10)
14.3.1 Pick-Up Optics
679(1)
14.3.1.1 Optical Layout
679(1)
14.3.1.2 Influence of Intensity Distribution
680(1)
14.3.2 Wave Aberrations
681(1)
14.3.2.1 Aberration Derived from Disk Substrate
682(1)
14.3.2.2 Wave Aberrations of Optical Components
683(1)
14.3.2.3 Aberration Due to the Semiconductor Laser
683(2)
14.3.2.4 Defocus
685(1)
14.3.2.5 Allowable Wave Aberration
686(1)
14.3.3 Optical Pick-Up Mechanism
686(1)
14.3.3.1 Optical Pick-Up Construction
686(2)
14.3.3.2 Actuator
688(1)
14.4 Semiconductor Laser
689(4)
14.4.1 Laser Structure
689(1)
14.4.1.1 Operating Principles of an Al-Ga-As Double Heterojunction Laser
689(1)
14.4.1.2 High-Power Laser Technology
689(2)
14.4.2 Astigmatism of the Laser
691(1)
14.4.3 Laser Noise
691(2)
14.5 Focusing and Tracking Techniques
693(11)
14.5.1 Focusing Servo System and Method of Error Signal Detection
693(1)
14.5.1.1 Beam Shape Detection Method
694(1)
14.5.1.2 Spot Size Detection Method
695(1)
14.5.1.3 Beam Position Detection Method
696(2)
14.5.1.4 Beam Phase Difference Detection
698(1)
14.5.2 Track Error Signal Detection Method
698(1)
14.5.2.1 Detection Methods
698(1)
14.5.2.2 3-Beam Method
699(1)
14.5.2.3 Wobbling Method
699(1)
14.5.2.4 Differential Phase Detection (DPD) Method
699(1)
14.5.2.5 Push-Pull Track Error Signal Detection Method
700(1)
14.5.2.6 Slit Detection Method
700(3)
14.5.2.7 Sampled Tracking Method
703(1)
14.6 Radial Access and Driving Technique
704(9)
14.6.1 Fast Random Access
704(2)
14.6.2 Optical Drive System
706(1)
Acknowledgments
707(1)
Appendix A
707(1)
Appendix B
708(1)
Appendix C
709(1)
References
710(3)
15 CTP Scanning Systems
713(18)
Gregory Mueller
15.1 Introduction
713(1)
15.2 Description of Types of Scanning Systems
714(5)
15.2.1 A Note about System Resolution and CTP
714(1)
15.2.2 Internal Drum Scanners
714(1)
15.2.3 External Drum
715(1)
15.2.4 F-Theta Scan Architecture
716(1)
15.2.5 BasysPrint Platesetters
717(2)
15.3 Methodology for Determining CTP Implementation
719(5)
15.3.1 Productivity (plates per hour [ pph]), X
719(1)
15.3.2 Plate exposure time, τexp
719(1)
15.3.3 Plate handling time, τo
720(1)
15.3.4 The Dose Equation
720(1)
15.3.5 Optical Source Power
721(1)
15.3.6 Area Scan Rate
721(1)
15.3.7 BasysPrint Area Scan Rate
722(2)
15.4 Specific Platesetter Systems
724(5)
15.4.1 Fuji Saber V8-HS (Fujifilm Graphic Systems) (Internal drum)
724(1)
15.4.2 Kodak Generation News (Eastman Kodak Company) (External Drum)
725(1)
15.4.3 MacDermid Flexo Platesetter (F-Theta Scanner)
726(1)
15.4.4 BasysPrint Series 6 Platesetters (Punch Graphix International)
727(2)
15.5 Summary
729(2)
References
729(2)
16 Synchronous Laser Line Scanners for Undersea Imaging Applications
731
Fraser Dalgleish
Frank Caimi
Index 751
16.1 Introduction
731(4)
16.2 LLS Scanning System Historical Development
735(1)
16.3 Optical Design Principals for Underwater LLS Imaging Systems
736(4)
16.3.1 Dual Pyramidal Line Scanner
736(2)
16.3.2 Single Hexagonal Polygon Line Scanner
738(1)
16.3.3 Summary
739(1)
16.4 Raytrace Study: Focal Plane Aperture Requirements
740(5)
16.4.1 Dual Pyramidal Polygon Line Scanner
740(2)
16.4.2 Single Hexagonal Polygon Line Scanner
742(1)
16.4.3 Discussion
742(3)
16.5 Test Tank Experimental Results Using Single Hexagonal Polygon Line Scanner
745(1)
16.6 Conclusions and Future Possibilities
746
References
748
Gerald F. Marshall is a Consultant in Optical Design and Engineering, Niles, Michigan. Specializing in optical scanning and display systems, his extensive experience includes senior positions with Kaiser Electronics, San Jose, California; Energy Conversion Devices, Troy, Michigan; Axsys Technologies (formerly Speedring Systems), Rochester Hills, Michigan; and Medical Lasers, Burlington, Massachusetts. Previously he was engaged as a Senior R&D Engineer for airborne navigational display systems at Ferranti Ltd., Edinburgh, Scotland, and as a Physicist with Morganite International Ltd., London, England. The author of many papers, he holds a number of patents and is the editor of two internationally recognized reference books, Laser Beam Scanning and Optical Scanning (both titles, Marcel Dekker, Inc.). He is a Fellow of The Institute of Physics, the Optical Society of America, and SPIE-The International Society for Optical Engineering, of which he is a former director. He received the B.Sc. degree from London University, England.