Preface |
|
ix | |
Preface to Laser Beam Scanning (1985) |
|
xi | |
Preface to Optical Scanning (1991) |
|
xiii | |
Preface to Handbook of Optical and Laser Scanning (2004) |
|
xv | |
Cover Image |
|
xvii | |
Acknowledgments |
|
xix | |
Editors |
|
xxi | |
Contributors |
|
xxiii | |
|
1 Characterization of Laser Beams: The M2 Model |
|
|
1 | (68) |
|
|
|
|
2 | (1) |
|
1.2 Historical Development of Laser-Beam Characterization |
|
|
3 | (1) |
|
1.3 Organization of This Chapter |
|
|
4 | (1) |
|
1.4 The M2 Model for Mixed-Mode Beams |
|
|
5 | (11) |
|
1.4.1 Pure Transverse Modes: The Hermite-Gaussian and Laguerre-Gaussian Functions |
|
|
5 | (3) |
|
1.4.2 Mixed Modes: The Incoherent Superposition of Pure Modes |
|
|
8 | (1) |
|
1.4.3 Properties of the Fundamental Mode Related to the Beam Diameter |
|
|
9 | (2) |
|
1.4.4 Propagation Properties of the Fundamental-Mode Beam |
|
|
11 | (2) |
|
1.4.5 Propagation Properties of the Mixed-Mode Beam: The Embedded Gaussian and the M2 Model |
|
|
13 | (3) |
|
1.5 Transformation by a Lens of Fundamental and Mixed-Mode Beams |
|
|
16 | (4) |
|
1.5.1 Application of the Beam-Lens Transform to the Measurement of Divergence |
|
|
18 | (1) |
|
1.5.2 Applications of the Beam-Lens Transform: The Limit of Tight Focusing |
|
|
19 | (1) |
|
1.5.3 The Inverse Transform Constant |
|
|
20 | (1) |
|
1.6 Beam Diameter Definitions for Fundamental and Mixed-Mode Beams |
|
|
20 | (17) |
|
1.6.1 Determining Beam Diameters from Irradiance Profiles |
|
|
20 | (2) |
|
1.6.2 General Considerations in Obtaining Useable Beam Profiles |
|
|
22 | (4) |
|
1.6.2.1 How Commercial Scanning Aperture Profilers Work |
|
|
26 | (1) |
|
1.6.3 Comparing the Five Common Methods for Defining and Measuring Beam Diameters |
|
|
27 | (1) |
|
1.6.3.1 Dpin, Separation of 1/e2 Clip Points of a Pinhole Profile |
|
|
27 | (1) |
|
1.6.3.2 Dslit, Separation of 1/e2 Clip Points of a Slit Profile |
|
|
28 | (1) |
|
1.6.3.3 Dke, Twice the Separation of the 15.9% and 84.1% Clip Points of a Knife-Edge Scan |
|
|
28 | (1) |
|
1.6.3.4 D86, Diameter of a Centered Circular Aperture Passing 86.5% of the Total Beam Power |
|
|
28 | (1) |
|
1.6.3.5 D4σ, Four Times the Standard Deviation of the Pinhole Irradiance Profile |
|
|
29 | (1) |
|
1.6.3.6 Sensitivity of D4σ to the Signal-to-Noise Ratio of the Profile |
|
|
30 | (1) |
|
1.6.3.7 Reasons for D4σ Being the ISO Choice of Standard Diameter |
|
|
31 | (1) |
|
1.6.3.8 Diameter Definitions: Final Note |
|
|
32 | (1) |
|
1.6.4 Conversions between Diameter Definitions |
|
|
33 | (1) |
|
|
33 | (1) |
|
1.6.4.2 Emprical Basis for the Conversion Rules |
|
|
33 | (2) |
|
1.6.4.3 Rules for Converting Diameters between Different Definitions |
|
|
35 | (2) |
|
1.7 Practical Aspects of Beam Quality M2 Measurement: The Four-Cuts Method |
|
|
37 | (8) |
|
1.7.1 The Logic of the Four-Cuts Method |
|
|
39 | (1) |
|
1.7.1.1 Requirement of an Auxiliary Lens to Make an Accessible Waist |
|
|
39 | (2) |
|
1.7.1.2 Accuracy of the Location Found for the Waist |
|
|
41 | (1) |
|
1.7.2 Graphical Analysis of the Data |
|
|
41 | (2) |
|
1.7.3 Discussion of Curve-Fit Analysis of the Data |
|
|
43 | (1) |
|
1.7.4 Commercial Instruments and Software Packages |
|
|
44 | (1) |
|
1.8 Types of Beam Asymmetry |
|
|
45 | (7) |
|
1.8.1 Common Types of Beam Asymmetry |
|
|
46 | (2) |
|
1.8.2 The Equivalent Cylindrical Beam Concept |
|
|
48 | (3) |
|
1.8.3 Other Beam Asymmetries: Twisted Beams, General Astigmatism |
|
|
51 | (1) |
|
1.9 Applications of The M2 Model to Laser Beam Scanners |
|
|
52 | (8) |
|
1.9.1 A Stereolithography Scanner |
|
|
52 | (2) |
|
1.9.2 Conversion to a Consistent Knife-Edge Currency |
|
|
54 | (1) |
|
1.9.3 Why Use a Multimode Laser? |
|
|
54 | (1) |
|
1.9.4 How to Read the Laser Test Report |
|
|
55 | (1) |
|
1.9.5 Replacing the Focusing Beam Expander with an Equivalent Lens |
|
|
55 | (2) |
|
1.9.6 Depth of Field and Spot-Size Variation at the Scanned Surface |
|
|
57 | (1) |
|
1.9.7 Laser Specifications to Limit Spot Out-of-Roundness on the Scanned Surface |
|
|
57 | (1) |
|
1.9.7.1 Case A: 10% Waist Asymmetry |
|
|
57 | (1) |
|
1.9.7.2 Case B: 10% Divergence Asymmetry |
|
|
58 | (1) |
|
1.9.7.3 Case C: 12% Out-of-Roundness across the Scanned Surface Due to Astigmatism |
|
|
59 | (1) |
|
1.10 Conclusion: Overview of The M2 Model |
|
|
60 | (10) |
|
|
61 | (1) |
|
|
62 | (4) |
|
|
66 | (4) |
|
2 Optical Systems for Laser Scanners |
|
|
69 | (64) |
|
|
|
70 | (1) |
|
2.2 Laser Scanner Configurations |
|
|
71 | (1) |
|
|
71 | (1) |
|
2.2.2 Post-objective Scanning |
|
|
72 | (1) |
|
2.2.3 Pre-objective Scanning |
|
|
72 | (1) |
|
2.3 Optical Design and Optimization: Overview |
|
|
72 | (2) |
|
|
74 | (5) |
|
2.4.1 The Diffraction Limit |
|
|
76 | (1) |
|
2.4.2 Real Gaussian Beams |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (5) |
|
|
79 | (1) |
|
|
79 | (2) |
|
2.5.3 Resolution and Number of Pixels |
|
|
81 | (1) |
|
2.5.4 Depth of Focus Considerations |
|
|
81 | (2) |
|
|
83 | (1) |
|
2.6 First- and Third-Order Considerations |
|
|
84 | (9) |
|
2.6.1 Correction of First-Order Chromatic Aberrations |
|
|
87 | (1) |
|
2.6.2 Properties of Third-Order Aberrations |
|
|
88 | (1) |
|
2.6.2.1 Spherical Aberration |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
2.6.3 Third-Order Rules of Thumb |
|
|
91 | (1) |
|
2.6.4 Importance of the Petzval Radius |
|
|
92 | (1) |
|
2.7 Special Design Requirements |
|
|
93 | (7) |
|
2.7.1 Galvanometer Scanners |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
2.7.2.2 Beam Displacement |
|
|
94 | (1) |
|
2.7.2.3 Cross-Scan Errors |
|
|
94 | (3) |
|
|
97 | (1) |
|
2.7.3 Polygon Scan Efficiency |
|
|
98 | (1) |
|
2.7.4 Internal Drum Systems |
|
|
99 | (1) |
|
2.7.5 Holographic Scanning Systems |
|
|
100 | (1) |
|
|
100 | (12) |
|
2.8.1 Anatomy of a Simple Scan Lens Design |
|
|
101 | (5) |
|
2.8.2 Multiconfiguration Using Tilted Surfaces |
|
|
106 | (2) |
|
2.8.3 Multiconfiguration Reflective Polygon Model |
|
|
108 | (1) |
|
2.8.4 Example Single-Pass Polygon Setup |
|
|
109 | (1) |
|
2.8.4.1 Multiconfiguration Code V Lens Prescription |
|
|
110 | (1) |
|
2.8.4.2 Lens Prescription Model |
|
|
111 | (1) |
|
|
112 | (1) |
|
2.9 Selected Laser Scan Lens Designs |
|
|
112 | (6) |
|
2.9.1 A 300 DPI Office Printer Lens (λ = 633 nm) |
|
|
113 | (1) |
|
2.9.2 Wide-Angle Scan Lens (λ = 633 nm) |
|
|
114 | (1) |
|
2.9.3 Semiwide Angle Scan Lens (λ = 633 nm) |
|
|
114 | (1) |
|
2.9.4 Moderate Field Angle Lens with Long Scan Line (λ = 633 nm) |
|
|
115 | (1) |
|
2.9.5 Scan Lens for Light-Emitting Diode (λ = 800 nm) |
|
|
116 | (1) |
|
2.9.6 High-Precision Scan Lens Corrected for Two Wavelengths (λ = 1064 and 950 nm) |
|
|
116 | (1) |
|
2.9.7 High-Resolution Telecentric Scan Lens (λ = 408 nm) |
|
|
117 | (1) |
|
2.10 Scan Lens Manufacturing, Quality Control, and Final Testing |
|
|
118 | (1) |
|
2.11 Holographic Laser Scanning Systems |
|
|
118 | (4) |
|
2.11.1 Scanning with a Plane Linear Grating |
|
|
119 | (1) |
|
2.11.2 Line Bow and Scan Linearity |
|
|
120 | (1) |
|
2.11.3 Effect of Scan Disc Wobble |
|
|
121 | (1) |
|
2.12 Noncontact Dimensional Measurement System Using Holographic Scanning |
|
|
122 | (7) |
|
2.12.1 Speed, Accuracy, and Reliability Issues |
|
|
124 | (1) |
|
2.12.2 Optical System Configuration |
|
|
125 | (2) |
|
2.12.3 Optical Performance |
|
|
127 | (2) |
|
2.13 Holographic Laser Printing Systems |
|
|
129 | (2) |
|
|
131 | (4) |
|
|
131 | (1) |
|
|
132 | (3) |
|
3 Image Quality for Scanning and Digital Imaging Systems |
|
|
133 | (114) |
|
|
|
|
135 | (5) |
|
3.1.1 Imaging Science for Scanned Imaging Systems |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
3.1.1.3 Types of Scanners |
|
|
136 | (1) |
|
3.1.2 The Context for Scanned Image Quality Evaluation |
|
|
137 | (3) |
|
3.2 Basic Concepts and Effects |
|
|
140 | (26) |
|
3.2.1 Fundamental Principles of Digital Imaging |
|
|
140 | (1) |
|
3.2.1.1 Structure of Digital Images |
|
|
140 | (5) |
|
3.2.1.2 The Sampling Theorem and Spatial Relationships |
|
|
145 | (3) |
|
3.2.1.3 Gray Level Quantization: Some Limiting Effects |
|
|
148 | (4) |
|
3.2.2 Basic System Effects |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (2) |
|
3.2.2.3 Halftone System Response |
|
|
155 | (4) |
|
|
159 | (1) |
|
|
160 | (6) |
|
3.3 Practical Considerations |
|
|
166 | (8) |
|
3.3.1 Scan Frequency Effects |
|
|
166 | (3) |
|
3.3.2 Placement Errors or Motion Defects |
|
|
169 | (4) |
|
3.3.3 Other Nonuniformities |
|
|
173 | (1) |
|
3.3.3.1 Perception of Periodic Nonuniformities in Color Separation Images |
|
|
173 | (1) |
|
3.4 Characterization of Input Scanners that Generate Multilevel Gray Signals (Including Digital Cameras) |
|
|
174 | (19) |
|
3.4.1 Tone Reproduction and Large Area Systems Response |
|
|
175 | (6) |
|
3.4.2 MTF and Related Blur Metrics |
|
|
181 | (2) |
|
|
183 | (6) |
|
3.4.2.2 The Human Visual System's Spatial Frequency Response |
|
|
189 | (1) |
|
3.4.2.3 Electronic Enhancement of MTFs: Sharpness Improvement |
|
|
189 | (1) |
|
|
190 | (3) |
|
3.5 Evaluating binary, thresholded, scanned imaging systems |
|
|
193 | (9) |
|
3.5.1 Importance of Evaluating Binary Scanning |
|
|
193 | (1) |
|
3.5.1.1 Angled Lines and Line Arrays |
|
|
193 | (1) |
|
3.5.2 General Principles of Threshold Imaging Tone Reproduction and Use of Gray Wedges |
|
|
194 | (1) |
|
3.5.2.1 Underlying Characteristic Curve and Noise |
|
|
194 | (1) |
|
3.5.3 Binary Imaging Metrics Relating to MTF and Blur |
|
|
195 | (1) |
|
3.5.3.1 Resolving Power (A Measure for Discrimination of Fine Detail) |
|
|
195 | (3) |
|
3.5.3.2 Line Imaging Interactions |
|
|
198 | (1) |
|
3.5.4 Binary Metrics Relating to Noise Characteristics |
|
|
198 | (1) |
|
|
198 | (1) |
|
3.5.4.2 Line Edge Noise Range Metric |
|
|
199 | (1) |
|
3.5.4.3 Noise in Halftoned or Screened Digital Images |
|
|
200 | (2) |
|
3.6 Summary Measures of Imaging Performance |
|
|
202 | (12) |
|
3.6.1 Basic Signal-to-Noise Ratio |
|
|
202 | (2) |
|
3.6.2 Detective Quantum Efficiency and Noise Equivalent Quanta |
|
|
204 | (1) |
|
3.6.3 Application-Specific Context |
|
|
204 | (1) |
|
3.6.4 Modulation Requirement Measures |
|
|
204 | (1) |
|
3.6.5 Area under the MTF Cure (MTFA) and Square Root Integral (SQRI) |
|
|
205 | (1) |
|
3.6.6 Measures of Subjective Quality |
|
|
206 | (3) |
|
3.6.7 Information Content and Information Capacity |
|
|
209 | (5) |
|
3.7 Specialized Image Processing |
|
|
214 | (5) |
|
|
214 | (2) |
|
3.7.2 Nonlinear Enhancement and Restoration of Digital Images |
|
|
216 | (2) |
|
|
218 | (1) |
|
3.8 Psychometric Measurement Methods Used to Evaluate Image Quality |
|
|
219 | (7) |
|
3.8.1 Relationships between Psychophysics, Customer Research, and Psychometric Scaling |
|
|
219 | (1) |
|
3.8.2 Psychometric Methods |
|
|
220 | (1) |
|
|
221 | (1) |
|
3.8.3.1 Identification (Nominal) |
|
|
222 | (1) |
|
3.8.3.2 Rank Order (Ordinal) |
|
|
222 | (1) |
|
3.8.3.3 Category (Nominal, Ordinal, Interval) |
|
|
222 | (1) |
|
3.8.3.4 Graphical Rating (Interval) |
|
|
222 | (1) |
|
3.8.3.5 Paired Comparison (Ordinal, Interval, Ratio) |
|
|
222 | (1) |
|
3.8.3.6 Partition Scaling (Interval) |
|
|
223 | (1) |
|
3.8.3.7 Magnitude Estimation (Interval, Ratio) |
|
|
223 | (1) |
|
3.8.3.8 Ratio Estimation (Ratio) |
|
|
223 | (1) |
|
3.8.3.9 Semantic Differential (Ordinal, Interval) |
|
|
223 | (1) |
|
3.8.3.10 Likert Method (Ordinal) |
|
|
223 | (1) |
|
3.8.3.11 Hybrids (Ordinal, Interval, Ratio) |
|
|
224 | (1) |
|
3.8.4 Practical Experimental Matters Including Statistics |
|
|
224 | (2) |
|
3.9 Reference Data and Charts |
|
|
226 | (22) |
|
|
237 | (1) |
|
|
238 | (10) |
|
4 Polygonal Scanners: Components, Performance, and Design |
|
|
247 | (34) |
|
|
|
248 | (1) |
|
4.2 Types of Scanning Mirrors |
|
|
248 | (4) |
|
4.2.1 Prismatic Polygonal Scanning Mirrors |
|
|
249 | (1) |
|
4.2.2 Pyramidal Polygonal Scanning Mirrors |
|
|
250 | (1) |
|
|
250 | (1) |
|
4.2.4 Irregular Polygonal Scanning Mirrors |
|
|
250 | (2) |
|
|
252 | (1) |
|
4.4 Polygonal Mirror Fabrication Techniques |
|
|
253 | (2) |
|
4.4.1 Conventional Polishing |
|
|
253 | (1) |
|
4.4.2 Single Point Diamond Turning |
|
|
254 | (1) |
|
4.4.3 Polishing versus Diamond Turning |
|
|
254 | (1) |
|
4.5 Polygon Specifications |
|
|
255 | (5) |
|
4.5.1 Facet-to-Facet Angle Variance |
|
|
256 | (1) |
|
|
256 | (1) |
|
4.5.3 Facet-to-Axis Variance |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
258 | (1) |
|
4.5.6 Surface Quality and Scatter |
|
|
258 | (2) |
|
|
260 | (2) |
|
4.7 Motors and Bearing Systems |
|
|
262 | (2) |
|
|
262 | (1) |
|
4.7.2 Hysteresis Synchronous Motors |
|
|
262 | (1) |
|
4.7.3 Brushless DC Motors |
|
|
263 | (1) |
|
|
263 | (1) |
|
4.8 Scanner Specifications |
|
|
264 | (4) |
|
|
265 | (1) |
|
4.8.2 Jitter and Speed Stability |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
4.8.5 Time to Synchronization |
|
|
268 | (1) |
|
|
268 | (1) |
|
4.10 System Design Considerations |
|
|
269 | (3) |
|
4.11 Polygon Size Calculation |
|
|
272 | (2) |
|
4.12 Minimizing Image Defects in Scanning Systems |
|
|
274 | (4) |
|
|
274 | (2) |
|
|
276 | (1) |
|
4.12.3 Scatter and Ghost Images |
|
|
276 | (1) |
|
4.12.4 Intensity Variation |
|
|
277 | (1) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
278 | (4) |
|
|
278 | (1) |
|
|
278 | (4) |
|
5 Motors and Controllers (Drivers) for High-Performance Polygonal Scanners |
|
|
281 | (38) |
|
|
|
|
282 | (1) |
|
5.2 Polygonal Scanner Basics |
|
|
282 | (6) |
|
5.2.1 Polygon Configurations |
|
|
282 | (3) |
|
5.2.2 Polygon Rotation and Scan Angle Relationship |
|
|
285 | (1) |
|
5.2.3 Polygon Speed Considerations |
|
|
286 | (2) |
|
5.3 Case Study: A Film Recording System |
|
|
288 | (4) |
|
5.3.1 System Performance Requirements |
|
|
289 | (1) |
|
|
290 | (1) |
|
5.3.3 Scanner Specification Tolerances |
|
|
290 | (2) |
|
5.3.4 High-Performance, Defined |
|
|
292 | (1) |
|
|
292 | (14) |
|
|
292 | (2) |
|
5.4.2 Hysteresis Synchronous Motor |
|
|
294 | (4) |
|
5.4.3 Brushless DC Motor Characteristics |
|
|
298 | (1) |
|
5.4.3.1 Torque and Winding Characteristics |
|
|
299 | (1) |
|
5.4.3.2 Brushless Motor Circuit Model |
|
|
299 | (3) |
|
5.4.3.3 Winding Configurations |
|
|
302 | (1) |
|
5.4.3.4 Commutation Sensor Timing and Alignment |
|
|
303 | (1) |
|
5.4.3.5 Rotor Configurations |
|
|
303 | (3) |
|
5.5 Control System Design |
|
|
306 | (4) |
|
5.5.1 AC Synchronous Motor Control |
|
|
306 | (1) |
|
5.5.2 DC Brushless Motor Control |
|
|
307 | (3) |
|
|
310 | (7) |
|
5.6.1 Military Vehicle Thermal Imager Scanner |
|
|
310 | (1) |
|
5.6.2 Battery-Powered Thermal Imager Scanner |
|
|
311 | (2) |
|
5.6.3 High-Speed Single-Faceted Scanner |
|
|
313 | (1) |
|
5.6.4 Versatile Single Board Controller and Driver |
|
|
314 | (3) |
|
|
317 | (3) |
|
|
317 | (1) |
|
|
318 | (2) |
|
6 Bearings for Rotary Scanners |
|
|
319 | (40) |
|
|
|
320 | (1) |
|
6.2 Bearing Types for Rotary Scanners |
|
|
320 | (1) |
|
6.2.1 Gas-Lubricated Bearings |
|
|
321 | (1) |
|
6.2.2 Oil-Lubricated Bearings |
|
|
321 | (1) |
|
|
321 | (1) |
|
|
321 | (1) |
|
|
321 | (1) |
|
|
322 | (29) |
|
|
322 | (2) |
|
|
324 | (1) |
|
6.4.2.1 Low Heat Generation |
|
|
324 | (1) |
|
6.4.2.2 Wide Temperature Range |
|
|
325 | (1) |
|
6.4.2.3 Noncontamination of Environment |
|
|
325 | (1) |
|
6.4.2.4 Repeatability of Smoothness |
|
|
326 | (1) |
|
6.4.2.5 Accuracy of Rotation |
|
|
326 | (1) |
|
6.4.2.6 Noise and Vibration |
|
|
326 | (1) |
|
6.4.3 Aerostatic Bearings |
|
|
326 | (1) |
|
6.4.3.1 Aerostatic Journal Bearing |
|
|
327 | (3) |
|
6.4.3.2 Aerostatic Thrust Bearing |
|
|
330 | (3) |
|
6.4.3.3 Aerostatic Scanner Construction |
|
|
333 | (2) |
|
6.4.4 Aerodynamic Bearings |
|
|
335 | (2) |
|
6.4.4.1 Spiral Groove Bearings |
|
|
337 | (1) |
|
6.4.4.2 Lobed Bearings/Shaft |
|
|
338 | (2) |
|
6.4.4.3 Spindle Construction |
|
|
340 | (1) |
|
6.4.5 Hybrid Gas Bearings |
|
|
341 | (1) |
|
6.4.6 Bearing and Shaft Dynamics |
|
|
342 | (1) |
|
6.4.6.1 Synchronous Whirls |
|
|
342 | (1) |
|
|
343 | (1) |
|
6.4.6.3 Shaft Natural Frequency |
|
|
343 | (1) |
|
|
343 | (1) |
|
|
344 | (1) |
|
6.4.7.1 Optics and Holders |
|
|
345 | (4) |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
351 | (3) |
|
|
351 | (2) |
|
6.5.2 Scanner Construction |
|
|
353 | (1) |
|
|
354 | (1) |
|
6.6.1 Bearing Design Principle |
|
|
354 | (1) |
|
6.6.2 Scanner Construction |
|
|
354 | (1) |
|
6.7 Optical Scanning Errors |
|
|
355 | (2) |
|
6.7.1 Bearing-Related Errors |
|
|
355 | (1) |
|
6.7.2 Optic-Related Errors |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
|
357 | (3) |
|
|
358 | (1) |
|
|
358 | (2) |
|
7 Pre-Objective Polygonal Scanning |
|
|
359 | (34) |
|
|
|
360 | (1) |
|
7.1.1 Equations and Coordinates of a Polygonal Scanning System |
|
|
361 | (1) |
|
7.1.2 Instantaneous Center-of-Scan (ICS) |
|
|
361 | (1) |
|
7.1.3 Stationary Ghost Images Outside the Image Format |
|
|
361 | (1) |
|
7.2 Equations and Coordinates of a Polygonal Scanning System |
|
|
361 | (10) |
|
|
362 | (1) |
|
7.2.2 Midposition and Scan-Axis |
|
|
362 | (1) |
|
7.2.3 Mirror Facet Angle A |
|
|
362 | (1) |
|
|
362 | (1) |
|
7.2.5 Beam Width (Diameter) D |
|
|
362 | (1) |
|
7.2.6 Scan Duty Cycle (Scan Efficiency) |
|
|
363 | (1) |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
366 | (1) |
|
7.2.10 Optical Axis of the Objective Lens |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
|
7.2.11.2 Objective Lens Optical Axis |
|
|
368 | (1) |
|
7.2.11.3 Incident Beam Axis Through GP |
|
|
369 | (1) |
|
7.2.11.4 Mirror Facet Bisector and Normal |
|
|
369 | (1) |
|
7.2.12 Insights from an Alternative Analytical Approach |
|
|
369 | (1) |
|
7.2.13 Features of Figure 7.4 |
|
|
370 | (1) |
|
|
371 | (1) |
|
7.3 Instantaneous Center-of-Scan |
|
|
371 | (9) |
|
|
372 | (1) |
|
7.3.2 Locus of the Instantaneous Center-of-Scan |
|
|
372 | (1) |
|
7.3.3 Midposition and Scan-Axis |
|
|
373 | (1) |
|
7.3.4 Derivation of the Instantaneous Center-of-Scan Coordinates |
|
|
373 | (2) |
|
|
375 | (1) |
|
7.3.6 Spreadsheet Program |
|
|
376 | (2) |
|
7.3.7 Instantaneous Center-of-Scan |
|
|
378 | (1) |
|
|
379 | (1) |
|
7.3.9 Offset Angle Limits |
|
|
379 | (1) |
|
7.3.10 Finite Beam Width D |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
380 | (1) |
|
7.4 Stationary Ghost Images Outside the Image Format |
|
|
380 | (14) |
|
|
380 | (1) |
|
7.4.2 Stationary Ghost Images |
|
|
380 | (1) |
|
|
381 | (1) |
|
7.4.4 Facet-to-Facet Tangential Angle |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
7.4.8 Scan Duty Cycle (Scan Efficiency) η |
|
|
381 | (1) |
|
7.4.9 Rotation Axis Offset Distance |
|
|
382 | (1) |
|
7.4.10 Choosing an Incident Beam Offset Angle 2β |
|
|
383 | (1) |
|
7.4.11 Ghost Beams gh and Images GH |
|
|
383 | (1) |
|
7.4.12 Ghost Beam Field Angles φ |
|
|
383 | (1) |
|
7.4.13 Incident Beam Location |
|
|
383 | (1) |
|
7.4.14 Image Format Scan Duty Cycle ηω |
|
|
384 | (1) |
|
7.4.15 Incident Beam Offset Angle 27° |
|
|
384 | (1) |
|
7.4.16 Incident Beam Offset Angle 52° |
|
|
385 | (1) |
|
7.4.17 Incident Beam Offset Angle 92° |
|
|
385 | (2) |
|
7.4.18 Incident Beam Offset Angle 124° |
|
|
387 | (1) |
|
7.4.19 Ghost Images Inside the Image Format |
|
|
388 | (1) |
|
7.4.20 Ghost Images Outside the Image Format |
|
|
388 | (1) |
|
|
388 | (2) |
|
7.4.22 Diameters of Scanner and Objective Lens |
|
|
390 | (1) |
|
|
390 | (1) |
|
|
390 | (1) |
|
|
390 | (1) |
|
|
390 | (4) |
|
8 Galvanometric and Resonant Scanners |
|
|
393 | (56) |
|
|
|
394 | (2) |
|
8.1.1 Historical Developments |
|
|
395 | (1) |
|
8.2 Component and Design Issues |
|
|
396 | (34) |
|
8.2.1 Galvanometric Scanners |
|
|
396 | (1) |
|
8.2.1.1 Moving Magnet Torque Motor |
|
|
396 | (7) |
|
8.2.1.2 Position Transducer |
|
|
403 | (3) |
|
|
406 | (4) |
|
|
410 | (5) |
|
8.2.1.5 Image Distortions |
|
|
415 | (3) |
|
8.2.1.6 Dynamic Performances |
|
|
418 | (8) |
|
8.2.1.7 Evaluation Parameters |
|
|
426 | (1) |
|
|
427 | (1) |
|
|
427 | (1) |
|
|
428 | (1) |
|
8.2.2.3 Induced Moving Coil |
|
|
428 | (2) |
|
|
430 | (9) |
|
8.3.1 Scanning Architectures |
|
|
430 | (1) |
|
8.3.1.1 Post-objective Scanning |
|
|
430 | (1) |
|
8.3.1.2 Pre-objective Scanning |
|
|
431 | (1) |
|
8.3.1.3 Flying Objective Scanning |
|
|
431 | (1) |
|
8.3.2 Two-Axis Beam Steering Systems |
|
|
431 | (1) |
|
8.3.2.1 Single-Mirror TABS |
|
|
431 | (1) |
|
|
432 | (1) |
|
8.3.2.3 Classic Two-Mirror Construction |
|
|
432 | (2) |
|
8.3.2.4 Paddle Scanner Two-Mirror Configuration |
|
|
434 | (2) |
|
8.3.2.5 Golf Club Two-Mirror Configuration |
|
|
436 | (3) |
|
8.3.2.6 TABS with Three Moving Optical Elements |
|
|
439 | (1) |
|
|
439 | (1) |
|
8.5 Scanning Applications |
|
|
440 | (5) |
|
8.5.1 Material Processing |
|
|
440 | (1) |
|
|
441 | (1) |
|
8.5.2.1 Pre-objective Scanning |
|
|
442 | (1) |
|
8.5.2.2 The Marvin Minsky Confocal Microscope |
|
|
443 | (1) |
|
8.5.2.3 Flying Objective Scanning Microscope |
|
|
443 | (1) |
|
8.5.2.4 Rectilinear Flying Objective Microscope |
|
|
443 | (1) |
|
8.5.2.5 Rotary Flying Objective Microscope |
|
|
444 | (1) |
|
|
445 | (5) |
|
|
445 | (1) |
|
|
445 | (3) |
|
|
448 | (2) |
|
9 Flexural Pivots for Oscillatory Scanners |
|
|
449 | (36) |
|
|
|
450 | (4) |
|
9.1.1 Introduction to Macroscale Flexure Pivots |
|
|
451 | (3) |
|
|
454 | (8) |
|
|
454 | (2) |
|
|
456 | (3) |
|
|
459 | (1) |
|
|
460 | (2) |
|
9.3 Flexure Manufacturing |
|
|
462 | (2) |
|
9.3.1 Manufacturing the Material |
|
|
462 | (1) |
|
9.3.2 Cutting Out the Flexures |
|
|
463 | (1) |
|
9.3.3 Corrosion Protectio |
|
|
463 | (1) |
|
|
464 | (2) |
|
9.5 Crossed-Axis Flexure Pivots |
|
|
466 | (4) |
|
9.5.1 General Introduction |
|
|
466 | (1) |
|
|
467 | (1) |
|
9.5.3 Cambridge Technology Crossed-Flexure Design Example |
|
|
468 | (2) |
|
9.6 Low-Cost Cantilever Scanner |
|
|
470 | (4) |
|
|
471 | (2) |
|
|
473 | (1) |
|
9.6.3 Motor Size Required |
|
|
474 | (1) |
|
9.7 Vibrating-Wire Scanner |
|
|
474 | (1) |
|
9.8 Microelectromechanical Flexure Scanners |
|
|
474 | (9) |
|
|
475 | (2) |
|
|
477 | (1) |
|
9.8.3 Operation of the Scanner |
|
|
477 | (2) |
|
9.8.4 Material Properties |
|
|
479 | (1) |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
481 | (1) |
|
9.8.6 Dynamic Performance |
|
|
481 | (1) |
|
|
481 | (1) |
|
|
481 | (1) |
|
9.8.6.3 Degradation Processes |
|
|
481 | (1) |
|
|
481 | (1) |
|
9.8.7.1 When and When Not to Use MEMS |
|
|
481 | (1) |
|
9.8.8 Anticipated Developments |
|
|
482 | (1) |
|
|
482 | (1) |
|
|
483 | (3) |
|
|
483 | (1) |
|
|
483 | (3) |
|
10 Holographic Barcode Scanners: Applications, Performance, and Design |
|
|
485 | (40) |
|
|
|
|
486 | (5) |
|
|
486 | (3) |
|
|
489 | (1) |
|
10.1.3 Barcode Properties |
|
|
490 | (1) |
|
10.2 Nonholographic UPC Scanners |
|
|
491 | (5) |
|
10.2.1 Forward-Looking Scanners |
|
|
493 | (1) |
|
10.2.2 Scan Pattern Wraparound |
|
|
494 | (1) |
|
|
495 | (1) |
|
10.3 Holographic Barcode Scanners |
|
|
496 | (7) |
|
10.3.1 What is a Holographic Deflector? |
|
|
496 | (3) |
|
10.3.2 Novel Properties of Holographic Barcode Scanning |
|
|
499 | (1) |
|
10.3.3 Depth of Field for a Conventional Optics Barcode Scanner |
|
|
500 | (2) |
|
10.3.4 Depth of Field for a Holographic Barcode Scanner |
|
|
502 | (1) |
|
10.4 Other Features of Holographic Scanning |
|
|
503 | (6) |
|
10.4.1 Overlapping Focal Zones |
|
|
504 | (1) |
|
10.4.2 Variable Light-Collection Aperture |
|
|
505 | (1) |
|
10.4.3 Facet Identification and Scan Tracking |
|
|
506 | (1) |
|
10.4.4 Scan-Angle Multiplication |
|
|
507 | (2) |
|
10.5 Holographic Deflector Media for Holographic Barcode Scanners |
|
|
509 | (5) |
|
10.5.1 Surface Relief Phase Media |
|
|
510 | (1) |
|
10.5.2 Volume Phase Media |
|
|
511 | (3) |
|
10.6 Fabrication of Holographic Deflectors |
|
|
514 | (4) |
|
10.6.1 The DCG Holographic Disc |
|
|
514 | (3) |
|
10.6.2 The Mechanically Replicated Surface-Relief Holographic Disc |
|
|
517 | (1) |
|
10.7 An Example of a Holographic Barcode Scanner: The Metrologic Penta Scanner |
|
|
518 | (8) |
|
10.7.1 The Penta Scan Pattern |
|
|
518 | (2) |
|
10.7.2 The Penta Scanning Mechanism |
|
|
520 | (2) |
|
|
522 | (4) |
|
11 Acousto-Optic Scanners and Modulators |
|
|
525 | (68) |
|
|
|
|
|
526 | (1) |
|
11.2 Acousto-Optic Interactions |
|
|
527 | (16) |
|
11.2.1 The Photoelastic Effect |
|
|
527 | (1) |
|
11.2.2 Isotropic AO Interaction |
|
|
528 | (8) |
|
11.2.3 Anisotropic Diffraction |
|
|
536 | (7) |
|
11.3 Acousto-Optic Modulator and Deflector Design |
|
|
543 | (8) |
|
11.3.1 Resolution and Bandwidth Considerations |
|
|
543 | (2) |
|
11.3.2 Interaction Bandwidth |
|
|
545 | (3) |
|
11.3.3 Deflector Design Procedure |
|
|
548 | (1) |
|
11.3.4 Modulator Design Procedure |
|
|
549 | (2) |
|
11.4 Specialized Acousto-Optic Devices for Scanning |
|
|
551 | (4) |
|
11.4.1 Acoustic Traveling Wave Lens |
|
|
551 | (1) |
|
11.4.1.1 Design Considerations |
|
|
551 | (2) |
|
|
553 | (1) |
|
11.4.3 Multichannel Acousto-Optic Modulator |
|
|
554 | (1) |
|
11.5 Materials for Acousto-Optic Devices |
|
|
555 | (5) |
|
11.5.1 General Considerations |
|
|
555 | (1) |
|
11.5.2 Theoretical Guidelines |
|
|
556 | (2) |
|
11.5.3 Selected Materials for Acousto-Optic Scanners |
|
|
558 | (2) |
|
11.6 Acoustic Transducer Design |
|
|
560 | (13) |
|
11.6.1 Transducer Characteristics |
|
|
560 | (4) |
|
11.6.2 Transducer Materials |
|
|
564 | (2) |
|
|
566 | (7) |
|
11.7 Acousto-Optic Device Fabrication |
|
|
573 | (5) |
|
|
573 | (1) |
|
11.7.2 Transducer Bonding |
|
|
574 | (3) |
|
|
577 | (1) |
|
11.8 Applications of Acousto-Optic Scanners |
|
|
578 | (13) |
|
11.8.1 Multichannel Acousto-Optic Modulator for Polygonal Scanner |
|
|
578 | (2) |
|
11.8.2 Infrared Laser Scanning |
|
|
580 | (1) |
|
11.8.3 Two-Stage Acousto-Optic Scanner |
|
|
581 | (1) |
|
|
582 | (2) |
|
|
584 | (1) |
|
11.8.4 Applications of Acousto-Optic Devices and Acousto-Optic Tunable Filters |
|
|
584 | (1) |
|
11.8.4.1 Acousto-Optic Modulators |
|
|
585 | (1) |
|
11.8.4.2 Acousto-Optic Deflectors |
|
|
585 | (2) |
|
11.8.4.3 Acousto-Optic Frequency Shifters |
|
|
587 | (1) |
|
11.8.4.4 Acousto-Optic Tunable Filters |
|
|
588 | (2) |
|
11.8.4.5 Acousto-Optic Wavelength Selectors |
|
|
590 | (1) |
|
11.8.4.6 Polychromatic Acousto-Optic Modulators |
|
|
591 | (1) |
|
|
591 | (3) |
|
|
591 | (1) |
|
|
591 | (3) |
|
12 Electro-Optical Scanners |
|
|
593 | (44) |
|
|
|
|
|
594 | (2) |
|
12.2 Theory of the Electro-Optic Effect |
|
|
596 | (2) |
|
12.2.1 The Electro-Optic Effect |
|
|
596 | (1) |
|
12.2.2 The Linear Electro-Optic Effect |
|
|
597 | (1) |
|
12.2.3 The Quadratic Electro-Optic Effect |
|
|
597 | (1) |
|
12.3 Principal Types of Electro-Optic Deflectors |
|
|
598 | (23) |
|
|
598 | (1) |
|
12.3.2 Terminology for Describing Electro-Optic Scanners |
|
|
598 | (1) |
|
12.3.2.1 Beam Displacement and Deflection Angle |
|
|
598 | (1) |
|
|
599 | (1) |
|
12.3.2.3 Resolvable Spots |
|
|
600 | (1) |
|
12.3.3 Single Elements and Assemblies of Single Elements |
|
|
601 | (1) |
|
|
602 | (1) |
|
12.3.4.1 Graded Index with Uniform Applied Voltage |
|
|
603 | (2) |
|
12.3.4.2 Graded Index with Constant Spacing |
|
|
605 | (1) |
|
12.3.4.3 Graded Index with Constant Spacing and Single Voltage |
|
|
606 | (1) |
|
|
606 | (2) |
|
12.3.5.1 Prismatic Poled Structures |
|
|
608 | (1) |
|
12.3.5.2 Rectangular Scanners |
|
|
609 | (3) |
|
12.3.5.3 Trapezoidal Scanners |
|
|
612 | (2) |
|
12.3.5.4 Horn-Shaped Scanners |
|
|
614 | (3) |
|
12.3.5.5 Domain Inverted Total Internal Reflection Deflectors |
|
|
617 | (1) |
|
12.3.5.6 Domain Inverted Grating Structures |
|
|
617 | (2) |
|
12.3.5.7 Other Poled Structures |
|
|
619 | (2) |
|
12.4 Electronic Drivers for Electro-Optic Deflectors |
|
|
621 | (7) |
|
|
621 | (1) |
|
12.4.2 High-Voltage Power Supplies |
|
|
621 | (1) |
|
12.4.2.1 Conventional Boost Converters |
|
|
622 | (1) |
|
12.4.2.2 Flyback Converters |
|
|
622 | (1) |
|
|
623 | (1) |
|
12.4.3.1 Simple Totem Pole Circuits |
|
|
623 | (2) |
|
12.4.3.2 Adiabatic Drivers |
|
|
625 | (2) |
|
|
627 | (1) |
|
12.5 Properties and Selection of Electro-Optic Materials |
|
|
628 | (5) |
|
|
628 | (1) |
|
12.5.2 ADP, KDP, and Related Isomorphs |
|
|
629 | (1) |
|
12.5.3 Lithium Niobate and Related Materials |
|
|
630 | (1) |
|
12.5.4 Potassium Titanyl Phosphate (KTP) |
|
|
631 | (1) |
|
|
631 | (1) |
|
12.5.5.1 AB-Type Binary Compounds |
|
|
631 | (1) |
|
12.5.5.2 Kerr Effect in Liquids |
|
|
631 | (1) |
|
12.5.5.3 Electro-Optic Ceramics in the (Pb, La)(Zr, Ti)O3 System |
|
|
631 | (1) |
|
|
632 | (1) |
|
12.5.6 Material Selection |
|
|
632 | (1) |
|
12.6 Electro-Optic Deflection System Design Process |
|
|
633 | (1) |
|
|
634 | (3) |
|
|
634 | (1) |
|
|
634 | (3) |
|
|
637 | (32) |
|
|
|
|
637 | (1) |
|
13.2 Structure and Design |
|
|
638 | (4) |
|
|
642 | (1) |
|
13.4 Properties of Motion |
|
|
643 | (2) |
|
13.5 Properties of Stack-Flexure Structures |
|
|
645 | (3) |
|
|
648 | (1) |
|
|
648 | (1) |
|
|
648 | (1) |
|
|
649 | (1) |
|
13.8 Tilting Stage Design |
|
|
650 | (1) |
|
|
651 | (3) |
|
|
651 | (1) |
|
13.9.2 Minimizing Cross talk |
|
|
652 | (1) |
|
13.9.3 Increasing stiffness |
|
|
653 | (1) |
|
|
654 | (4) |
|
13.11 Closed Loop Systems |
|
|
658 | (1) |
|
|
658 | (3) |
|
|
661 | (1) |
|
13.14 Electronic Control Architecture For Closed Loop Systems |
|
|
662 | (4) |
|
|
666 | (4) |
|
|
666 | (4) |
|
14 Optical Disk Scanning Technology |
|
|
669 | (44) |
|
|
|
670 | (3) |
|
14.1.1 Progress in Optical Disk Technology |
|
|
670 | (1) |
|
14.1.2 Characteristics of Optical Disks |
|
|
671 | (1) |
|
14.1.3 Principles of Optical Read/Write |
|
|
671 | (2) |
|
14.2 Applications of Optical Disk Systems |
|
|
673 | (6) |
|
14.2.1 Read-Only Optical Disk Systems |
|
|
673 | (1) |
|
|
674 | (1) |
|
|
674 | (1) |
|
|
674 | (1) |
|
14.2.2 Write-Once Disk Systems |
|
|
674 | (1) |
|
|
675 | (1) |
|
14.2.3 Erasable Optical Disk Systems |
|
|
675 | (1) |
|
|
675 | (1) |
|
|
675 | (4) |
|
14.3 Basic Design of Optical Disk Systems |
|
|
679 | (10) |
|
|
679 | (1) |
|
|
679 | (1) |
|
14.3.1.2 Influence of Intensity Distribution |
|
|
680 | (1) |
|
|
681 | (1) |
|
14.3.2.1 Aberration Derived from Disk Substrate |
|
|
682 | (1) |
|
14.3.2.2 Wave Aberrations of Optical Components |
|
|
683 | (1) |
|
14.3.2.3 Aberration Due to the Semiconductor Laser |
|
|
683 | (2) |
|
|
685 | (1) |
|
14.3.2.5 Allowable Wave Aberration |
|
|
686 | (1) |
|
14.3.3 Optical Pick-Up Mechanism |
|
|
686 | (1) |
|
14.3.3.1 Optical Pick-Up Construction |
|
|
686 | (2) |
|
|
688 | (1) |
|
|
689 | (4) |
|
|
689 | (1) |
|
14.4.1.1 Operating Principles of an Al-Ga-As Double Heterojunction Laser |
|
|
689 | (1) |
|
14.4.1.2 High-Power Laser Technology |
|
|
689 | (2) |
|
14.4.2 Astigmatism of the Laser |
|
|
691 | (1) |
|
|
691 | (2) |
|
14.5 Focusing and Tracking Techniques |
|
|
693 | (11) |
|
14.5.1 Focusing Servo System and Method of Error Signal Detection |
|
|
693 | (1) |
|
14.5.1.1 Beam Shape Detection Method |
|
|
694 | (1) |
|
14.5.1.2 Spot Size Detection Method |
|
|
695 | (1) |
|
14.5.1.3 Beam Position Detection Method |
|
|
696 | (2) |
|
14.5.1.4 Beam Phase Difference Detection |
|
|
698 | (1) |
|
14.5.2 Track Error Signal Detection Method |
|
|
698 | (1) |
|
14.5.2.1 Detection Methods |
|
|
698 | (1) |
|
|
699 | (1) |
|
|
699 | (1) |
|
14.5.2.4 Differential Phase Detection (DPD) Method |
|
|
699 | (1) |
|
14.5.2.5 Push-Pull Track Error Signal Detection Method |
|
|
700 | (1) |
|
14.5.2.6 Slit Detection Method |
|
|
700 | (3) |
|
14.5.2.7 Sampled Tracking Method |
|
|
703 | (1) |
|
14.6 Radial Access and Driving Technique |
|
|
704 | (9) |
|
14.6.1 Fast Random Access |
|
|
704 | (2) |
|
14.6.2 Optical Drive System |
|
|
706 | (1) |
|
|
707 | (1) |
|
|
707 | (1) |
|
|
708 | (1) |
|
|
709 | (1) |
|
|
710 | (3) |
|
|
713 | (18) |
|
|
|
713 | (1) |
|
15.2 Description of Types of Scanning Systems |
|
|
714 | (5) |
|
15.2.1 A Note about System Resolution and CTP |
|
|
714 | (1) |
|
15.2.2 Internal Drum Scanners |
|
|
714 | (1) |
|
|
715 | (1) |
|
15.2.4 F-Theta Scan Architecture |
|
|
716 | (1) |
|
15.2.5 BasysPrint Platesetters |
|
|
717 | (2) |
|
15.3 Methodology for Determining CTP Implementation |
|
|
719 | (5) |
|
15.3.1 Productivity (plates per hour [ pph]), X |
|
|
719 | (1) |
|
15.3.2 Plate exposure time, τexp |
|
|
719 | (1) |
|
15.3.3 Plate handling time, τo |
|
|
720 | (1) |
|
|
720 | (1) |
|
15.3.5 Optical Source Power |
|
|
721 | (1) |
|
|
721 | (1) |
|
15.3.7 BasysPrint Area Scan Rate |
|
|
722 | (2) |
|
15.4 Specific Platesetter Systems |
|
|
724 | (5) |
|
15.4.1 Fuji Saber V8-HS (Fujifilm Graphic Systems) (Internal drum) |
|
|
724 | (1) |
|
15.4.2 Kodak Generation News (Eastman Kodak Company) (External Drum) |
|
|
725 | (1) |
|
15.4.3 MacDermid Flexo Platesetter (F-Theta Scanner) |
|
|
726 | (1) |
|
15.4.4 BasysPrint Series 6 Platesetters (Punch Graphix International) |
|
|
727 | (2) |
|
|
729 | (2) |
|
|
729 | (2) |
|
16 Synchronous Laser Line Scanners for Undersea Imaging Applications |
|
|
731 | |
|
|
Index |
|
751 | |
|
|
731 | (4) |
|
16.2 LLS Scanning System Historical Development |
|
|
735 | (1) |
|
16.3 Optical Design Principals for Underwater LLS Imaging Systems |
|
|
736 | (4) |
|
16.3.1 Dual Pyramidal Line Scanner |
|
|
736 | (2) |
|
16.3.2 Single Hexagonal Polygon Line Scanner |
|
|
738 | (1) |
|
|
739 | (1) |
|
16.4 Raytrace Study: Focal Plane Aperture Requirements |
|
|
740 | (5) |
|
16.4.1 Dual Pyramidal Polygon Line Scanner |
|
|
740 | (2) |
|
16.4.2 Single Hexagonal Polygon Line Scanner |
|
|
742 | (1) |
|
|
742 | (3) |
|
16.5 Test Tank Experimental Results Using Single Hexagonal Polygon Line Scanner |
|
|
745 | (1) |
|
16.6 Conclusions and Future Possibilities |
|
|
746 | |
|
|
748 | |