Muutke küpsiste eelistusi

E-raamat: Handbook of Photonics for Biomedical Science

Edited by (Saratov State University, Russia)
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Handbook of Photonics for Biomedical Science analyzes achievements, new trends, and perspectives of photonics in its application to biomedicine. With contributions from world-renowned experts in the field, the handbook describes advanced biophotonics methods and techniques intensively developed in recent years.





Addressing the latest problems in biomedical optics and biophotonics, the book discusses optical and terahertz spectroscopy and imaging methods for biomedical diagnostics based on the interaction of coherent, polarized, and acoustically modulated radiation with tissues and cells. It covers modalities of nonlinear spectroscopic microscopies, photonic technologies for therapy and surgery, and nanoparticle photonic technologies for cancer treatment and UV radiation protection. The text also elucidates the advanced spectroscopy and imaging of normal and pathological tissues.





This comprehensive handbook represents the next step in contemporary biophotonics advances. By collecting recently published information scattered in the literature, the book enables researchers, engineers, and medical doctors to become familiar with major, state-of-the-art results in biophotonics science and technology.

Arvustused

Many of the chapters are written by leaders in their field and thus provide both good foundational descriptions as well as up-to-date accounts of the state of the field. ... the book does well throughout: providing a better than skin-deep introduction to a subject, focusing on the core issues within a field and providing references to enable more detailed investigation. ... It brings together much of the most important literature into an easily accessible form. Written by leaders in their respective fields, this book would be a valuable addition to the collection of researchers, engineers and clinicians alike. -Peter R.T. Munro, Contemporary Physics, 2011

Preface xix
The Editor xxv
List of Contributors
xxvii
1 FDTD Simulation of Light Interaction with Cells for Diagnostics and Imaging in Nanobiophotonics
1(36)
Stoyan Tanev
Wenbo Sun
James Pond
Valery V. Tuchin
1.1 Introduction
2(1)
1.2 Formulation of the FDTD Method
3(16)
1.2.1 The basic FDTD numerical scheme
3(1)
1.2.2 Numerical excitation of the input wave
4(3)
1.2.3 Uni-axial perfectly matched layer absorbing boundary conditions
7(3)
1.2.4 FDTD formulation of the light scattering properties from single cells
10(5)
1.2.5 FDTD formulation of optical phase contrast microscopic (OPCM) imaging
15(4)
1.3 FDTD Simulation Results of Light Scattering Patterns from Single Cells
19(5)
1.3.1 Validation of the simulation results
19(3)
1.3.2 Effect of extracellular medium absorption on the light scattering patterns
22(2)
1.4 FDTD Simulation Results of OPCM Nanobioimaging
24(5)
1.4.1 Cell structure
24(1)
1.4.2 Optical clearing effect
24(1)
1.4.3 The cell imaging effect of gold nanoparticles
25(4)
1.5 Conclusion
29(8)
2 Plasmonic Nanoparticles: Fabrication, Optical Properties, and Biomedical Applications
37(50)
Nikolai G. Khlebtsov
Lev A. Dykman
2.1 Introduction
37(1)
2.2 Chemical Wet Synthesis and Functionalization of Plasmon-Resonant NPs
38(2)
2.2.1 Nanosphere colloids
38(1)
2.2.2 Metal nanorods
38(1)
2.2.3 Metal nanoshells
39(1)
2.2.4 Other particles and nanoparticles assemblies
39(1)
2.3 Optical Properties
40(18)
2.3.1 Basic physical principles
40(3)
2.3.2 Plasmon resonances
43(2)
2.3.3 Metal spheres
45(1)
2.3.4 Metal nanorods
46(7)
2.3.5 Coupled plasmons
53(5)
2.4 Biomedical Applications
58(11)
2.4.1 Functionalization of metal nanoparticles
58(2)
2.4.2 Homogenous and biobarcode assays
60(1)
2.4.3 Solid-phase assays with nanoparticle markers
61(2)
2.4.4 Functionalized NPs in biomedical sensing and imaging
63(2)
2.4.5 Interaction of NPs with living cells and organisms: Cell-uptake, biodistri-bution, and toxicity aspects
65(2)
2.4.6 Application of NPs to drug delivery and photothermal therapy
67(2)
2.5 Conclusion
69(18)
3 Transfection by Optical Injection
87(32)
David J. Stevenson
Frank J. Gunn-Moore
Paul Campbell
Kishan Dholakia
3.1 Introduction: Why Cell Transfection?
87(2)
3.2 Nonoptical Methods of Transfection
89(2)
3.2.1 Lipoplex transfection
89(1)
3.2.2 Polyplex transfection
89(1)
3.2.3 Gene gun transfection
90(1)
3.2.4 Ultrasound transfection
90(1)
3.2.5 Electroporation
90(1)
3.3 Review of Optical Injection and Transfection
91(6)
3.4 Physics of Species Transport through a Photopore
97(14)
3.5 Physics of the Laser-Cell Interaction
111(2)
3.6 Conclusion
113(6)
4 Advances in Fluorescence Spectroscopy and Imaging
119(18)
Herbert Schneckenburger
Petra Weber
Thomas Bruns
Michael Wagner
4.1 Introduction
119(1)
4.2 Techniques and Requirements
120(3)
4.2.1 Video microscopy and tomography
120(1)
4.2.2 Spectral imaging
121(1)
4.2.3 Fluorescence anisotropy
122(1)
4.2.4 Fluorescence lifetime imaging microscopy (FLIM)
122(1)
4.2.5 Fluorescence screening
123(1)
4.3 Applications
123(9)
4.3.1 Autofluorescence imaging
123(2)
4.3.2 Membrane dynamics
125(3)
4.3.3 FRET-based applications
128(4)
4.4 Final Remarks
132(5)
5 Applications of Optical Tomography in Biomedical Research
137(22)
Ana Sarasa-Renedo
Alex Darrell
Jorge Ripoll
5.1 Introduction
137(2)
5.1.1 Fluorescent molecular probes
138(1)
5.2 Light Propagation in Highly Scattering Media
139(5)
5.2.1 The diffusion equation
139(1)
5.2.2 Fluorescence molecular tomography
139(5)
5.3 Light Propagation in Nonscattering Media
144(15)
5.3.1 Optical projection tomography
144(3)
5.3.2 Reconstruction methods in OPT
147(12)
6 Fluorescence Lifetime Imaging and Metrology for Biomedicine
159(38)
Clifford Talbot
James McGinty
Ewan McGhee
Dylan Owen
David Grant
Sunil Kumar
Pieter De Beule
Egidijus Auksorius
Hugh Manning
Neil Galletly
Bebhinn Treanor
Gordon Kennedy
Peter M.P. Lanigan
Ian Munro
Daniel S. Elson
Anthony Magee
Dan Davis
Mark Neil
Gordon Stamp
Christopher Dunsby
Paul French
6.1 Introduction
159(3)
6.2 Techniques for Fluorescence Lifetime Imaging and Metrology
162(8)
6.2.1 Overview
162(2)
6.2.2 Single-point and laser-scanning measurements of fluorescence lifetime
164(3)
6.2.3 Wide-field FLIM
167(3)
6.3 FLIM and MDFI of Biological Tissue Auto fluorescence
170(5)
6.3.1 Introduction
170(1)
6.3.2 Application to cancer
171(1)
6.3.3 Application to atherosclerosis
172(3)
6.4 Application to Cell Biology
175(3)
6.4.1 Fluorescence lifetime sensing
175(1)
6.4.2 FLIM applied to FRET
176(2)
6.5 Multidimensional Fluorescence Measurement and Imaging Technology
178(4)
6.5.1 Overview
178(1)
6.5.2 Excitation-resolved FLIM
179(1)
6.5.3 Emission-resolved FLIM
180(2)
6.6 Outlook
182(15)
7 Raman and CARS Microscopy of Cells and Tissues
197(32)
Christoph Krafft
Jurgen Popp
7.1 Introduction
197(2)
7.2 Experimental Methods
199(4)
7.2.1 Raman spectroscopy
199(1)
7.2.2 Raman microscopy
200(1)
7.2.3 Surface enhanced resonance Raman scattering (SERS)
201(1)
7.2.4 Resonance Raman scattering (RRS)
201(1)
7.2.5 Coherent anti-Stokes Raman scattering (CARS) microscopy
201(1)
7.2.6 Raman imaging
202(1)
7.3 Sample Preparation and Reference Spectra
203(2)
7.3.1 Preparation of tissues
203(1)
7.3.2 Preparation of cells
204(1)
7.3.3 Raman spectra of biological molecules
204(1)
7.4 Applications to Cells
205(6)
7.4.1 Raman microscopy of microbial cells
205(1)
7.4.2 Raman spectroscopy of eukaryotic cells
206(2)
7.4.3 Resonance Raman spectroscopy of cells
208(1)
7.4.4 SERS/TERS of cells
208(2)
7.4.5 CARS microscopic imaging of cells
210(1)
7.5 Applications to Tissue
211(5)
7.5.1 Raman imaging of hard tissues
211(1)
7.5.2 Raman imaging of soft tissues
212(2)
7.5.3 SERS detection of tissue-specific antigens
214(1)
7.5.4 CARS for medical tissue imaging
215(1)
7.6 Conclusions
216(13)
8 Resonance Raman Spectroscopy of Human Skin for the In Vivo Detection of Carotenoid Antioxidant Substances
229(24)
Maxim E. Darvin
Juergen Lademann
8.1 Introduction
230(1)
8.2 Production of Free Radicals in the Skin
231(1)
8.3 Antioxidative Potential of Human Skin
231(1)
8.3.1 Different types of antioxidants measured in the human skin
231(1)
8.3.2 Role of cutaneous carotenoids
232(1)
8.4 Physicochemical Properties of Cutaneous Carotenoids
232(1)
8.4.1 Antioxidative activity
232(1)
8.4.2 Optical absorption
232(1)
8.4.3 Solubility
232(1)
8.5 Methods for the Detection of Cutaneous Carotenoids
233(2)
8.5.1 High pressure liquid chromatography (HPLC)
233(1)
8.5.2 Reflection spectroscopy
233(1)
8.5.3 Raman spectroscopy
234(1)
8.5.4 Comparison of the methods
235(1)
8.6 Resonance Raman Spectroscopy (RRS)
235(5)
8.6.1 Setup for in vivo resonance Raman spectroscopy of cutaneous carotenoids
235(1)
8.6.2 Optimization of the setup parameters
236(1)
8.6.3 Typical RRS spectra of carotenoids obtained from the skin
237(1)
8.6.4 Measurements of the total amount of carotenoids in the skin
238(1)
8.6.5 Selective detection of cutaneous beta-carotene and lycopene
238(1)
8.6.6 Measurements of cutaneous lycopene
239(1)
8.7 Results Obtained by RRS In Vivo
240(7)
8.7.1 Distribution of carotenoids in the human skin
240(1)
8.7.2 Stress factors, which decrease the carotenoid level in the skin
241(1)
8.7.3 Potential methods to increase the carotenoid level in the skin
242(1)
8.7.4 "Seasonal increase" of cutaneous carotenoids
243(1)
8.7.5 Antioxidants and premature aging
243(2)
8.7.6 Topical application of antioxidants
245(1)
8.7.7 Medication with antioxidants
245(2)
8.8 Strategies on the Application of Antioxidant Substances
247(1)
8.9 Conclusions
247(6)
9 Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Using Mueller Matrix Decomposition
253(30)
Nirmalya Ghosh
Michael Wood
Alex Vitkin
9.1 Introduction
254(1)
9.2 Mueller Matrix Preliminaries and the Basic Polarization Parameters
255(3)
9.3 Polar Decomposition of Mueller Matrices for Extraction of the Individual Intrinsic Polarization Parameters
258(3)
9.4 Sensitive Experimental System for Mueller Matrix Measurements in Turbid Media
261(3)
9.5 Forward Modeling of Simultaneous Occurrence of Several Polarization Effects in Turbid Media Using the Monte Carlo Approach
264(3)
9.6 Validation of the Mueller Matrix Decomposition Method in Complex Tissue-Like Turbid Media
267(3)
9.7 Selected Trends: Path length and Detection Geometry Effects on the Decomposition-Derived Polarization Parameters
270(4)
9.8 Initial Biomedical Applications
274(5)
9.8.1 Noninvasive glucose measurement in tissue-like turbid media
274(1)
9.8.2 Monitoring regenerative treatments of the heart
275(2)
9.8.3 Proof-of-principle in vivo biomedical deployment of the method
277(2)
9.9 Concluding Remarks on the Prospect of the Mueller Matrix Decomposition Method in Polarimetric Assessment of Biological Tissues
279(4)
10 Statistical, Correlation, and Topological Approaches in Diagnostics of the Structure and Physiological State of Birefringent Biological Tissues
283(40)
O.V. Angelsky
A.G. Ushenk
Yu.A. Ushenko
V.P. Pishak
A.P. Peresunko
10.1 Introduction
284(4)
10.1.1 Polarimetric approach
284(1)
10.1.2 Correlation approach
285(1)
10.1.3 Topological or singular optical approach
286(2)
10.2 Biological Tissue as the Converter of Parameters of Laser Radiation
288(3)
10.2.1 Crystal optical model of anisotropic component of the main types of biological tissues
288(2)
10.2.2 Techniques for analysis of the structure of inhomogeneously polarized object fields
290(1)
10.3 Laser Polarimetry of Biological Tissues
291(12)
10.3.1 Polarization mapping of biological tissues: Apparatus and techniques
291(1)
10.3.2 Statistical and fractal analysis of polarization images of histological slices of biological tissues
292(2)
10.3.3 Diagnostic feasibilities of polarization mapping of histological slices of biological tissues of various physiological states
294(4)
10.3.4 Polarization 2D tomography of biological tissues
298(5)
10.4 Polarization Correlometry of Biological Tissues
303(5)
10.4.1 The degree of mutual polarization at laser images of biological tissues
303(1)
10.4.2 Technique for measurement of polarization-correlation maps of histological slices of biological tissues
304(1)
10.4.3 Statistical approach to the analysis of polarization-correlation maps of biological tissues
304(4)
10.5 The Structure of Polarized Fields of Biological Tissues
308(9)
10.5.1 Main mechanisms and scenarios of forming singular nets at laser fields of birefringent structures of biological tissues
308(1)
10.5.2 Statistical and fractal approaches to analysis of singular nets at laser fields of birefringent structures of biological tissues
309(4)
10.5.3 Scenarios of formation of singular structure of polarization parameters at images of biological tissues
313(1)
10.5.4 Structure of S-contours of polarization images of the architectonic nets of birefringent collagen fibrils
313(2)
10.5.5 On the interconnection of the singular and statistical parameters of inhomogeneously polarized nets of biological crystals
315(2)
10.6 Conclusion
317(6)
11 Biophotonic Functional Imaging of Skin Microcirculation
323(20)
Martin J. Leahy
Gert E. Nilsson
11.1 Skin Microvasculature
323(1)
11.2 Nailfold Capillaroscopy
324(1)
11.3 Laser Doppler Perfusion Imaging
325(4)
11.4 Laser Speckle Perfusion Imaging
329(2)
11.5 Polarization Spectroscopy
331(2)
11.6 Comparison of LDPI, LSPI, and TiVi
333(3)
11.7 Optical Microangiography
336(1)
11.8 Photoacoustic Tomography
337(2)
11.9 Conclusions
339(4)
12 Advances in Optoacoustic Imaging
343(18)
Tatiana Khokhlova
Ivan Pelivanov
Alexander Karabutov
12.1 Introduction
344(1)
12.2 Image Reconstruction in OA Tomography
345(4)
12.2.1 Solution of the inverse problem of OA tomography in spatial-frequency domain
346(1)
12.2.2 Solution of the inverse problem of OA tomography in time domain
347(1)
12.2.3 Possible image artifacts
348(1)
12.3 3D OA Tomography
349(2)
12.4 2D OA Tomography
351(6)
12.4.1 Transducer arrays for 2D OA tomography
351(4)
12.4.2 Image reconstruction in 2D OA tomography
355(2)
12.5 Conclusions
357(4)
13 Optical-Resolution Photoacoustic Microscopy for In Vivo Volumetric Microvascular Imaging in Intact Tissues
361(16)
Song Hu
Konstantin Maslov
Lihong V. Wang
13.1 Introduction
361(1)
13.2 Dark-Field PAM and Its Limitation in Spatial Resolution
362(1)
13.3 Resolution Improvement in PAM by Using Diffraction-Limited Optical Focusing
363(1)
13.4 Bright-Field OR-PAM
364(4)
13.4.1 System design
364(1)
13.4.2 Spatial resolution quantification
365(2)
13.4.3 Imaging depth estimation
367(1)
13.4.4 Sensitivity estimation
367(1)
13.5 In Vivo Microvascular Imaging Using OR-PAM
368(5)
13.5.1 Structural imaging
368(2)
13.5.2 Microvascular bifurcation
370(1)
13.5.3 Functional imaging of hemoglobin oxygen saturation
371(2)
13.5.4 In vivo brain microvascular imaging
373(1)
13.6 Conclusion and Perspectives
373(4)
14 Optical Coherence Tomography Theory and Spectral Time-Frequency Analysis
377(24)
Costas Pitris
Andreas Kartakoullis
Evgenia Bousi
14.1 Introduction
377(2)
14.2 Low Coherence Interferometry
379(4)
14.2.1 Axial resolution
381(1)
14.2.2 Transverse resolution
382(1)
14.3 Implementations of OCT
383(2)
14.3.1 Time-domain scanning
383(1)
14.3.2 Fourier-domain OCT
384(1)
14.4 Delivery Devices
385(1)
14.5 Clinical Applications of OCT
385(4)
14.5.1 Ophthalmology
386(1)
14.5.2 Cardiology
386(1)
14.5.3 Oncology
386(1)
14.5.4 Other applications
387(1)
14.5.5 OCT in biology
388(1)
14.6 OCT Image Interpretation
389(1)
14.7 Spectroscopic OCT
390(6)
14.7.1 Mie theory in SOCT
390(1)
14.7.2 Spectral analysis of OCT signals
391(1)
14.7.3 Spectral analysis based on Burg's method
392(3)
14.7.4 Experimental demonstration of SOCT for scatterer size estimation
395(1)
14.8 Conclusions
396(5)
15 Label-Free Optical Micro-Angiography for Functional Imaging of Microcirculations within Tissue Beds In Vivo
401(22)
Lin An
Yali Jia
Ruikang K. Wang
15.1 Introduction
401(2)
15.2 Brief Principle of Doppler Optical Coherence Tomography
403(1)
15.3 Optical Micro-Angiography
404(7)
15.3.1 In vivo full-range complex Fourier-domain OCT
405(2)
15.3.2 OMAG flow imaging
407(2)
15.3.3 Directional OMAG flow imaging
409(2)
15.4 OMAG System Setup
411(1)
15.5 OMAG Imaging Applications
412(3)
15.5.1 In vivo volumetric imaging of vascular perfusion within the human retina and choroids
413(1)
15.5.2 Imaging cerebral blood perfusion in small animal models
413(2)
15.6 Conclusions
415(8)
16 Fiber-Based OCT: From Optical Design to Clinical Applications
423(22)
V. Gelikonov
G. Gelikonov
M. Kirillin
N. Shakhova
A. Sergeev
N. Gladkova
E. Za-Gaynova
16.1 Introduction (History, Motivation, Objectives)
423(2)
16.2 Fiber-Based OCT as a Tool for Clinical Application
425(5)
16.2.1 Design of the fiber-based cross-polarization OCT device
425(3)
16.2.2 OCT probes: Customizing the device
428(2)
16.3 Clinical Applications of the Fiber-Based OCT Device
430(9)
16.3.1 Diagnosis of cancer and target biopsy optimization
430(1)
16.3.2 Differential diagnosis of diseases with similar manifestations
431(1)
16.3.3 OCT monitoring of treatment
431(1)
16.3.4 OCT for guided surgery
432(2)
16.3.5 Cross-polarization OCT modality for neoplasia OCTdiagnosis
434(1)
16.3.6 OCT miniprobe application
435(4)
16.4 Conclusion
439(6)
17 Noninvasive Assessment of Molecular Permeability with OCT
445(20)
Kirill V. Larin
Mohamad G. Ghosn
Valery V. Tuchin
17.1 Introduction
446(1)
17.2 Principles of OCT Functional Imaging
447(3)
17.3 Materials and Methods
450(2)
17.3.1 Experimental setup
450(1)
17.3.2 Ocular tissues
450(1)
17.3.3 Vascular tissues
451(1)
17.3.4 Data processing
451(1)
17.4 Results
452(7)
17.4.1 Diffusion in the cornea
452(2)
17.4.2 Diffusion in the sclera
454(2)
17.4.3 In-depth diffusion monitoring
456(1)
17.4.4 Diffusion in the carotid
457(2)
17.5 Conclusions
459(6)
18 Confocal Light Absorption and Scattering Spectroscopic Microscopy
465(16)
Lev T. Perelman
18.1 Introduction
465(2)
18.2 Light Scattering Spectroscopy
467(1)
18.3 Confocal Microscopy
468(1)
18.4 Class Microscopy
469(4)
18.5 Imaging of Live Cells with Class Microscopy
473(1)
18.6 Characterization of Single Gold Nanorods with Class Microscopy
474(3)
18.7 Conclusion
477(4)
19 Dual Axes Confocal Microscopy
481(28)
Michael J. Mandella
Thomas D. Wang
19.1 Introduction
481(2)
19.1.1 Principles of Confocal Microscopy
482(1)
19.1.2 Role for dual axes confocal microscopy
482(1)
19.2 Limitations of Single Axis Confocal Microscopy
483(2)
19.2.1 Single axis confocal design
484(1)
19.2.2 Single axis confocal systems
484(1)
19.3 Dual Axes Confocal Architecture
485(9)
19.3.1 Dual axes design
486(1)
19.3.2 Dual axes point spread function
487(2)
19.3.3 Postobjective scanning
489(1)
19.3.4 Improved rejection of scattering
490(4)
19.4 Dual Axes Confocal Imaging
494(4)
19.4.1 Solid immersion lens
494(1)
19.4.2 Horizontal cross-sectional images
494(1)
19.4.3 Vertical cross-sectional images
495(1)
19.4.4 Dual axes confocal fluorescence imaging
496(2)
19.5 MEMS Scanning Mechanisms
498(3)
19.5.1 Scanner structure and function
498(1)
19.5.2 Scanner characterization
499(1)
19.5.3 Scanner fabrication process
500(1)
19.6 Miniature Dual Axes Confocal Microscope
501(4)
19.6.1 Imaging scanhead
501(1)
19.6.2 Assembly and alignment
501(1)
19.6.3 Instrument control and image acquisition
502(1)
19.6.4 In vivo confocal fluorescence imaging
503(1)
19.6.5 Endoscope compatible prototype
503(2)
19.7 Conclusions and Future Directions
505(4)
20 Nonlinear Imaging of Tissues
509(38)
Riccardo Cicchi
Leonardo Sacconi
Francesco Pavone
20.1 Introduction
509(1)
20.2 Theoretical Background
510(6)
20.2.1 Two-photon excitation fluorescence microscopy
510(2)
20.2.2 Second-harmonic generation microscopy
512(1)
20.2.3 Fluorescence lifetime imaging microscopy
513(3)
20.3 Morphological Imaging
516(7)
20.3.1 Combined two-photon fluorescence-second-harmonic generation microscopy on skin tissue
516(1)
20.3.2 Combined two-photon fluorescence-second-harmonic generation microscopy on diseased dermis tissue
516(2)
20.3.3 Combined two-photon fluorescence-second-harmonic generation microscopy on bladder tissue
518(2)
20.3.4 Second-harmonic generation imaging on cornea
520(1)
20.3.5 Improving the penetration depth with two-photon imaging: Application of optical clearing agents
520(3)
20.4 Chemical Imaging
523(3)
20.4.1 Lifetime imaging of basal cell carcinoma
523(2)
20.4.2 Enhancing tumor margins with two-photon fluorescence by using aminolevulinic acid
525(1)
20.5 Morpho-Functional Imaging
526(9)
20.5.1 Single spine imaging and ablation inside brain of small living animals
526(5)
20.5.2 Optical recording of electrical activity in intact neuronal network by random access second-harmonic (RASH) microscopy
531(4)
20.6 Conclusion
535(12)
21 Endomicroscopy Technologies for High-Resolution Nonlinear Optical Imaging and Optical Coherence Tomography
547(28)
Yicong Wu
Xingde Li
21.1 Introduction
548(1)
21.2 Beam Scanning and Focusing Mechanisms in Endomicroscopes
549(7)
21.2.1 Mechanical scanning in side-viewing endomicroscopes
549(1)
21.2.2 Scanning mechanisms in forward-viewing endomicroscopes
550(5)
21.2.3 Compact objective lens and focusing mechanism
555(1)
21.3 Nonlinear Optical Endomicroscopy
556(5)
21.3.1 Special considerations in nonlinear optical endomicroscopy
556(1)
21.3.2 Nonlinear optical endomicroscopy embodiments and applications
557(4)
21.4 Optical Coherence Tomography Endomicroscopy
561(4)
21.4.1 Special considerations in OCT fiber-optic endomicroscopy
561(1)
21.4.2 Endomicroscopic OCT embodiments and the applications
561(4)
21.5 Summary
565(10)
22 Advanced Optical Imaging of Early Mammalian Embryonic Development
575(16)
Irina V. Larina
Mary E. Dickinson
Kirill V. Larin
22.1 Introduction
575(1)
22.2 Imaging Vascular Development Using Confocal Microscopy of Vital Fluorescent Markers
576(4)
22.3 Live Imaging of Mammalian Embryos With OCT
580(6)
22.3.1 Structural 3-D imaging of live embryos with SS-OCT
580(3)
22.3.2 Doppler SS-OCT imaging of blood flow
583(3)
22.4 Conclusion
586(5)
23 Terahertz Tissue Spectroscopy and Imaging
591(28)
Maxim Nazarov
Alexander Shkurinov
Valery V. Tuchin
X.-C. Zhang
23.1 Introduction: The Specific Properties of the THz Frequency Range for Monitoring of Tissue Properties
592(1)
23.2 Optics of THz Frequency Range: Brief Review on THz Generation and Detection Techniques
593(6)
23.2.1 CW lamp and laser sources, CW detectors
593(1)
23.2.2 FTIR
593(1)
23.2.3 THz-TDS, ATR
594(5)
23.3 Biological Molecular Fingerprints
599(4)
23.3.1 Introduction
599(1)
23.3.2 Sugars
600(1)
23.3.3 Polypeptides
600(1)
23.3.4 Proteins
601(1)
23.3.5 Amino-acids and nucleobases
602(1)
23.3.6 DNA
602(1)
23.4 Properties of Biological Tissues in the THz Frequency Range
603(1)
23.5 Water Content in Tissues and Its Interaction with Terahertz Radiation
604(8)
23.5.1 Data on water content in various tissues
605(1)
23.5.2 THz spectra of water solution
605(3)
23.5.3 Skin
608(1)
23.5.4 Muscles
608(1)
23.5.5 Liver
609(1)
23.5.6 Fat
609(1)
23.5.7 Blood, hemoglobin, myoglobin
609(1)
23.5.8 Hard tissue
610(1)
23.5.9 Tissue dehydration
610(2)
23.6 THz Imaging: Techniques and Applications
612(1)
23.6.1 Introduction
612(1)
23.6.2 Human breast
612(1)
23.6.3 Skin
612(1)
23.6.4 Tooth
612(1)
23.6.5 Nanoparticle-enabled terahertz imaging
612(1)
23.7 Summary
613(6)
24 Nanoparticles as Sunscreen Compound: Risks and Benefits
619(30)
Alexey P. Popov
Alexander V. Priezzhev
Juergen Lademann
Risto Myllyla
24.1 Introduction
620(1)
24.2 Nanoparticles in Sunscreens
620(1)
24.3 Penetration of Nanoparticles into Skin
621(5)
24.3.1 Skin structure
621(1)
24.3.2 Stratum corneum
622(1)
24.3.3 Permeability of stratum corneum
623(1)
24.3.4 Penetration of nanoparticles into human skin
624(2)
24.4 UV-Light-Blocking Efficacy of Nanoparticles
626(9)
24.4.1 Solar radiation
626(1)
24.4.2 Effect of UV radiation on skin
626(1)
24.4.3 Action spectrum and effective spectrum
627(1)
24.4.4 Mie calculations of cross-sections and anisotropy scattering factor of nanoparticles
627(2)
24.4.5 Model of stratum corneum with particles
629(2)
24.4.6 Results of simulations
631(4)
24.5 Toxicity of Nanoparticles
635(5)
24.5.1 Free radicals
635(1)
24.5.2 EPR technique
635(1)
24.5.3 Experiments with TiO2 nanoparticles: Materials
636(1)
24.5.4 Raman spectroscopy
636(1)
24.5.5 Mie calculations
636(2)
24.5.6 Experiments I: Emulsion on glass slides
638(1)
24.5.7 Experiments II: Emulsion on porcine skin
638(2)
24.6 Conclusion
640(9)
25 Photodynamic Therapy/Diagnostics: Principles, Practice, and Advances
649(38)
Brian C. Wilson
25.1 Historical Introduction
650(2)
25.2 Photophysics of PDT/PDD
652(4)
25.3 Photochemistry of PDT/PDD
656(2)
25.4 Photobiology of PDT
658(3)
25.5 PDT Instrumentation
661(11)
25.5.1 Light sources
661(2)
25.5.2 Light delivery and distribution
663(2)
25.5.3 Dose monitoring
665(4)
25.5.4 PDT response modeling
669(1)
25.5.5 PDT biological response monitoring
670(2)
25.5.6 PDT treatment planning
672(1)
25.6 PDD Technologies
672(3)
25.7 Novel Directions in PDT
675(5)
25.7.1 Photophysics-based developments
676(2)
25.7.2 Photosensitizer-based
678(1)
25.7.3 Photobiology-based
678(1)
25.7.4 Applications-based
679(1)
25.8 Conclusions
680(7)
26 Advances in Low-Intensity Laser and Phototherapy
687(30)
Ying-Ying Huang
Aaron C.-H. Chen
Michael R. Hamblin
26.1 Historical Introductions
688(1)
26.2 Cellular Chromophores
688(4)
26.2.1 Mitochondria
689(1)
26.2.2 Mitochondrial Respiratory Chain
689(1)
26.2.3 Tissue photobiology
689(1)
26.2.4 Cytochrome c oxidase is a photoacceptor
690(1)
26.2.5 Photoactive porphyrins
690(1)
26.2.6 Flavoproteins
691(1)
26.2.7 Laser speckle effects in mitochondria
691(1)
26.2.8 LLLT enhances ATP synthesis in mitochondria
692(1)
26.3 LLLT and Signaling Pathways
692(3)
26.3.1 Redox sensitive pathway
692(1)
26.3.2 Cyclic AMP-dependent signaling pathway
693(1)
26.3.3 Nitric oxide signaling
693(1)
26.3.4 G-protein pathway
694(1)
26.4 Gene Transcription after LLLT
695(2)
26.4.1 NF-κB
696(1)
26.4.2 AP-1
696(1)
26.4.3 HIF-1
696(1)
26.4.4 Ref-1
697(1)
26.5 Cellular Effects
697(3)
26.5.1 Prevention of apoptosis
699(1)
26.5.2 Proliferation
699(1)
26.5.3 Migration
699(1)
26.5.4 Adhesion
700(1)
26.6 Tissue Effects
700(1)
26.6.1 Epithelium
700(1)
26.6.2 Connective tissue
700(1)
26.6.3 Muscle tissue
701(1)
26.7 Animal and Clinical Studies of LLLT
701(5)
26.7.1 LLLT in inflammatory disorders
701(2)
26.7.2 LLLT in healing
703(1)
26.7.3 LLLT in pain relief
704(1)
26.7.4 LLLT in aesthetic applications
705(1)
26.8 Conclusion
706(11)
27 Low-Level Laser Therapy in Stroke and Central Nervous System
717(22)
Ying-Ying Huang
Michael R. Hamblin
Luis De Taboada
27.1 Introduction
718(1)
27.2 Photobiology of Low-Level Laser Therapy
718(1)
27.3 LLLT Effects on Nerves
719(1)
27.3.1 LLLT on neuronal cells
719(1)
27.3.2 LLLT on nerves in vivo
720(1)
27.4 Human Skull Transmission Measurements
720(1)
27.5 The Problem of Stroke
721(3)
27.5.1 Epidemic of stroke
721(2)
27.5.2 Mechanisms of brain injury after stroke
723(1)
27.5.3 Thrombolysis therapy of stroke
724(1)
27.5.4 Investigational neuroprotectants and pharmacological intervention
724(1)
27.6 TLT for Stroke
724(3)
27.6.1 TLT in animal models for stroke
725(1)
27.6.2 TLT in clinical trials for stroke
726(1)
27.7 LLLT for CNS Damage
727(3)
27.7.1 Traumatic brain injury (TBI)
729(1)
27.7.2 Spinal cord injury (SCI)
729(1)
27.7.3 Reversal of neurotoxicity
729(1)
27.8 LLLT for Neurodegenerative Diseases
730(1)
27.8.1 Neurodegenerative disease
730(1)
27.8.2 Parkinson's disease
730(1)
27.8.3 Alzheimer's disease
730(1)
27.8.4 Amyotrophic lateral sclerosis (ALS)
731(1)
27.9 LLLT for Psychiatric Disorders
731(1)
27.10 Conclusions and Future Outlook
731(8)
28 Advances in Cancer Photothermal Therapy
739(24)
Wei R. Chen
Xiaosong Li
Mark F. Naylor
Hong Liu
Robert E. Nordquist
28.1 Introduction
740(1)
28.2 Thermal Effects on Biological Tissues
741(1)
28.2.1 Tissue responses to temperature increase
741(1)
28.2.2 Tumor tissue responses to thermal therapy
741(1)
28.2.3 Immune responses induced by photothermal therapy
741(1)
28.3 Selective Photothermal Interaction in Cancer Treatment
742(4)
28.3.1 Near-infrared laser for tissue irradiation
742(1)
28.3.2 Selective photothermal interaction using light absorbers
742(1)
28.3.3 Indocyanine green
743(1)
28.3.4 In vivo selective laser-photothermal tissue interaction
743(1)
28.3.5 Laser-ICG photothermal effect on survival of tumor-bearing rats
744(2)
28.4 Selective Photothermal Therapy Using Nanotechnology
746(1)
28.4.1 Nanotechnology in biomedical fields
746(1)
28.4.2 Nanotechnology for immunological enhancement
746(1)
28.4.3 Nanotechnology for enhancement of photothermal interactions
746(1)
28.4.4 Antibody-conjugated nanomaterials for enhancement of photothermal destruction of tumors
746(1)
28.5 Photothermal Immunotherapy
747(5)
28.5.1 Procedures of photothermal immunotherapy
748(1)
28.5.2 Effects of photothermal immunotherapy in preclinical studies
748(2)
28.5.3 Possible immunological mechanism of photothermal immunotherapy
750(1)
28.5.4 Photothermal immunotherapy in clinical studies
751(1)
28.6 Conclusion
752(11)
29 Cancer Laser Thermotherapy Mediated by Plasmonic Nanoparticles
763(36)
Georgy S. Terentyuk
Garif G. Akchurin
Irina L. Maksimova
Galina N. Maslyakova
Nikolai G. Khlebtsov
Valery V. Tuchin
29.1 Introduction
764(2)
29.2 Characteristics of Gold Nanoparticles
766(1)
29.3 Calculation of the Temperature Fields and Model Experiments
767(7)
29.4 Circulation and Distribution of Gold Nanoparticles and Induced Alterations of Tissue Morphology at Intravenous Particle Delivery
774(7)
29.5 Local Laser Hyperthermia and Thermolysis of Normal Tissues, Transplanted and Spontaneous Tumors
781(9)
29.6 Conclusions
790(9)
30 "All Laser" Corneal Surgery by Combination of Femtosecond Laser Ablation and Laser Tissue Welding
799(12)
Francesca Rossi
Paolo Matteini
Fulvio Ratto
Luca Menabuoni
Ivo Lenzetti
Roberto Pini
30.1 Basic Principles of Femtosecond Laser Ablation
800(1)
30.2 Femtosecond Laser Preparation of Ocular Flaps
800(2)
30.3 Low-Power Diode Laser Welding of Ocular Tissues
802(2)
30.4 Combining Femtosecond Laser Cutting and Diode Laser Suturing
804(3)
30.4.1 Penetrating keratoplasty
804(1)
30.4.2 Anterior lamellar keratoplasty
805(1)
30.4.3 Endothelial transplantation (deep lamellar keratoplasty)
806(1)
30.5 Conclusions
807(4)
Index 811
Valery V. Tuchin is the optics and biophotonics chair and director of Research-Educational Institute of Optics and Biophotonics at Saratov State University in Russia. He is also head of the laboratory on laser diagnostics of technical and living systems in the Institute of Precise Mechanics and Control of the Russian Academy of Science.