Muutke küpsiste eelistusi

E-raamat: Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence

Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 321,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This publication is a key resource on the latest advancements in business applications and the use of mining software solutions to achieve optimal decision-making and risk management results. Highlighting innovative studies on data warehousing, businessactivity monitoring, and text mining"--

Computer science, technology, math, and other scholars mainly from Asia offer 22 articles on data mining techniques and applications for business intelligence. They address business analytics with data mining and its applications, including the use of statistics, data classification, secure data analysis in clusters, data mining for secure online payment transactions, and spatial data mining; social media analytics techniques with sentiment analysis and its applications of business intelligence, including opinion mining, online product reviews, and the ethics of social media research; big data processes and its applications, with discussion of health care and marketing; and advanced decision models for business analytics, including e-commerce applications, artificial intelligence in stochastic multiple criteria decision making, a price competitive inventory model, the use of a fuzzy stochastic programming model, and the ranking of cloud services using opinion mining and multi-attribute decision making. Annotation ©2017 Ringgold, Inc., Portland, OR (protoview.com)
Preface xxii
Acknowledgment xxvi
Section 1 Business Intelligence With Data Mining: Process and Applications
Chapter 1 An Introduction to Data Analytics: Its Types and Its Applications
1(14)
A. Sheik Abdullah
S. Selvakumar
A. M. Abirami
Chapter 2 Data Mining and Statistics: Tools for Decision Making in the Age of Big Data
15(19)
Hirak Dasgupta
Chapter 3 Data Classification: Its Techniques and Big Data
34(18)
A. Sheik Abdullah
R. Suganya
S. Selvakumar
S. Rajaram
Chapter 4 Secure Data Analysis in Clusters (Iris Database)
52(10)
Raghvendra Kumar
Prasant Kumar Pattnaik
Priyanka Pandey
Chapter 5 Data Mining for Secure Online Payment Transaction
62(28)
Masoumeh Zareapoor
Pourya Shamsolmoali
M. Afshar Alam
Chapter 6 The Integral of Spatial Data Mining in the Era of Big Data: Algorithms and Applications
90(38)
Gebeyehu Belay Gebremeskel
Chai Yi
Zhongshi He
Section 2 Social Media Analytics With Sentiment Analysis: Business Applications and Methods
Chapter 7 Social Media as Mirror of Society
128(14)
Amir Manzoor
Chapter 8 Business Intelligence through Opinion Mining
142(20)
T. K. Das
Chapter 9 Sentiment Analysis
162(13)
A. M. Abirami
A. Sheik Abdullah
A. Askarunisa
S. Selvakumar
C. Mahalakshmi
Chapter 10 Aspect-Based Sentiment Analysis of Online Product Reviews
175(17)
Vinod Kumar Mishra
Himanshu Tiruwa
Chapter 11 Sentiment Analysis with Social Media Analytics, Methods, Process, and Applications
192(17)
Karteek Ramalinga Ponnuru
Rashik Gupta
Shrawan Kumar Trivedi
Chapter 12 Organizational Issue for BI Success: Critical Success Factors for BI Implementations within the Enterprise
209(16)
Sanjiva Shankar Dubey
Arunesh Sharan
Chapter 13 Ethics of Social Media Research
225(15)
Amir Manzoor
Section 3 Big Data Analytics: Its Methods and Applications
Chapter 14 Big Data Analytics in Health Care
240(10)
Keerthi Suneetha
Chapter 15 Mining Big Data for Marketing Intelligence
250(9)
Khadija Ali Vakeel
Chapter 16 Predictive Analysis for Digital Marketing Using Big Data: Big Data for Predictive Analysis
259(25)
Balamurugan Balusamy
Priya Jha
Tamizh Arasi
Malathi Velu
Chapter 17 Strategic Best-in-Class Performance for Voice to Customer: Is Big Data in Logistics a Perfect Match?
284(14)
Supriyo Roy
Kaushik Kumar
Section 4 Advanced Data Analytics: Decision Models and Business Applications
Chapter 18 First Look on Web Mining Techniques to Improve Business Intelligence of E-Commerce Applications
298(17)
G. Sreedhar
A. Anandaraja Chari
Chapter 19 Artificial Intelligence in Stochastic Multiple Criteria Decision Making
315(26)
Hanna Sawicka
Chapter 20 Joint Decision for Price Competitive Inventory Model with Time-Price and Credit Period Dependent Demand
341(12)
Nita H. Shah
Chapter 21 On Development of a Fuzzy Stochastic Programming Model with Its Application to Business Management
353(26)
Animesh Biswas
Arnab Kumar De
Chapter 22 Ranking of Cloud Services Using Opinion Mining and Multi-Attribute Decision Making: Ranking of Cloud Services Using Opinion Mining and MADM
379(18)
Srimanyu Timmaraju
Vadlamani Ravi
G. R. Gangadharan
Compilation of References 397(30)
About the Contributors 427(9)
Index 436
Shrawan Kumar Trivedi, BML Munjal University, India.

Shubhamoy Dey, Indian Institute of Management Indore, India.

Anil Kumar, BML Munjal University, India.

Tapan Kumar Panda, Jindal Global Business School, India.