ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
1. Introduction Part
1. The Big Picture 2. Protecting Confidential Data through Non-Statistical Methods
3. 21st Century Statistical Disclosure Limitation: Motivations and Challenges Part
2. Formal Privacy Techniques 4. Review of Popular Algorithms for Differential Privacy
5. Privacy Implications of Practical Model Design Choices
6. Query answering for tabular data
7. Machine learning with differential privacy
8. Statistical Inference and Differential Privacy
9. Systems Issues in Formally Private Systems Part
3. Synthetic Data 10. Synthetic Data
11. Methods for Synthetic Data Generation
12. Validation Services for Confidential Data Part
4. Secure Multiparty Computation 13. Privacy-Preserving Distributed Computation
14. Differential Privacy and Cryptography
15. Overview of Secure Multi-Party Computation Applications in Health Research and Social Sciences Part
5. Use Cases 16. Differential Privacy Implementations
17. Synthpop a tool to enable more flexible use of sensitive data within the Scottish Longitudinal Study
18. Safe Data Technologies: Safely Expanding Access to Administrative Tax Data
19. Secure Federated Learning: Integrated Statistical Modeling for Healthcare Applications