Muutke küpsiste eelistusi

E-raamat: Handbook of Supercapacitor Materials: Synthesis, Characterization, and Applications

Edited by (King Abdulaziz University in Saudi Arabia), Edited by (King Abdulaziz University, Saudi Arabia), Edited by (Chinese Academy of Sciences, China), Edited by (National Technical University, Ukraine)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Aug-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527824762
  • Formaat - PDF+DRM
  • Hind: 272,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Aug-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527824762

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Discover foundational and cutting-edge concepts in the supercapacitor materials industry

Dramatic population growth and the development of lightweight portable electronic devices have accelerated the demand for faster and more sustainable energy storage systems. Supercapacitors promise to revolutionize the field due to their high energy and power density, long cycle life, fast rate of charge-discharge, and excellent safety record.

In Handbook of Supercapacitor Materials: Synthesis, Characterization, and Applications, a distinguished team of researchers delivers a comprehensive review of nature-inspired, organic, inorganic, and polymeric materials used in supercapacitor technology. The book explores aspects of synthesis methods, properties, foundational concepts, and the mechanisms of supercapacitor electrode materials.

The distinguished editors also provide resources that focus on supercapacitor performance utilizing electrical double layer electrodes and pseudocapacitor electrodes. State-of-the-art research is discussed in detail and will be extraordinary useful for graduate students, faculty, engineers, and scientists in solid-state chemistry, energy science, and materials science departments.

Readers will also find:

  • Overviews of mussel-inspired materials for electrochemical supercapacitors, bio-inspired active materials for supercapacitors, and self-healing supercapacitors
  • Practical discussions of polysaccharide-derived materials for supercapacitors, bio-derived carbon-based materials for supercapacitors, and metal oxides
  • A thorough introduction to metal chalcogenides and metal hydroxides for supercapacitors
  • An examination of template strategy direction towards conducting polymer for supercapacitors
  • A treatment of the morphology paradigm of conducting polymers

Perfect for materials scientists, electrochemists, engineers in power technology, Handbook of Supercapacitor Materials: Synthesis, Characterization, and Applications is also a must-have resource for professionals working in the electrotechnical and automobile industries.

Preface xi
1 Lignin-Derived Materials for Supercapacitors 1(52)
Jesus Muniz
Ana K. Cuentas-Gallegos
Miguel Robles
Alfredo Gulllen-Lopez
Diego R. Lobato-Peralta
Jojhar E. Pascoe-Sussoni
1.1 Lignocellulosic Biomass Conversion to Value-Added Products
1(5)
1.1.1 Cellulose
1(1)
1.1.2 Hemicellulose
2(2)
1.1.3 Lignin
4(2)
1.2 Production of Carbon Materials by Thermochemical Processes
6(7)
1.2.1 Hydrothermal Processing
7(1)
1.2.1.1 Hydrothermal Processing Mechanism
7(1)
1.2.2 Gasification
7(2)
1.2.2.1 Lignocellulosic Biomass Gasification Mechanism
8(1)
1.2.3 Pyrolysis
9(3)
1.2.3.1 Lignocellulosic Biomass Pyrolysis
9(1)
1.2.3.2 Fast Pyrolysis
10(1)
1.2.3.3 Intermediate Pyrolysis
11(1)
1.2.3.4 Slow Pyrolysis
11(1)
1.2.4 Solar Pyrolysis
12(1)
1.3 Nanoporous Carbon Obtained from Biomass for SC Applications
13(6)
1.3.1 Supercapacitors
13(3)
1.3.1.1 Electric Double-Layer Capacitors (ED LCs)
14(2)
1.3.2 Carbon Materials for ED LC
16(3)
1.3.2.1 Physical Activation
16(1)
1.3.2.2 Chemical Activation
17(1)
1.3.2.3 Pseudocapacitors
18(1)
1.3.2.4 Hybrid Supercapacitors
19(1)
1.4 Computational Simulation of Nanocarbon Structures from Lignin-Derived Materials with Potential Application in Energy Storage Devices
19(12)
1.4.1 Computational Study of Lignin from Different Computational Approaches
19(7)
1.4.2 Computational Studies of Lignin Through Pyrolysis-Simulated Molecular Dynamics
26(5)
1.5 Tailoring Nanocarbon Structures to Enhance the Performance of Electrodes in Supercapacitors
31(4)
1.5.1 MD to Aid the Design of EDLCs
34(1)
1.6 Perspectives for Future Development
35(1)
Acknowledgments
36(1)
References
36(17)
2 Some Aspects of Preparations and Applications of Electrochemical Double-Layer Capacitors (Supercapacitors) 53(26)
Aleksandr E. Kolosov
Volodymyr Y. Izotov
Elena P. Kolosova
Volodymyr V. Vanin
Anish Khan
2.1 Introduction
53(2)
2.2 Supercapacttors and Rechargeable Batteries
55(1)
2.3 Combined Electrodes for Double Electrochemical Layer Capacitors
56(11)
2.3.1 Brief State-of-the-Art Analysis Regarding the Technical Means of Manufacturing Electrodes for Electrochemical Double-Layer Capacitor
56(1)
2.3.2 Electrode Fabrication Method for Electrochemical Double-Layer Capacitors
57(3)
2.3.3 Combined Electrode for Double Electrochemical Layer Capacitors
60(3)
2.3.4 Improved Composite Electrode for Supercapacitors
63(4)
2.4 Prospective Carbon Nanomaterials for Manufacturing Electrodes of Supercapacitors: Nanotubes and Graphene
67(2)
2.5 Using Ultrasound while Getting Supercapacitors
69(1)
2.6 Some Perspective Applications for Supercapacitors
70(2)
2.7 Conclusions
72(1)
References
72(7)
3 Metal Hydroxides for Supercapacitors 79(34)
Viresh Kumar
Rigved Samant
Abu Faizal
Himanshu S. Panda
3.1 Introduction
79(2)
3.2 Unary Metal Hydroxides
81(15)
3.2.1 Nickel Hydroxide (NH)
81(5)
3.2.2 Cobalt Hydroxide
86(3)
3.2.3 Iron Hydroxide
89(2)
3.2.4 Manganese Hydroxide
91(1)
3.2.5 Cadmium Hydroxide
91(2)
3.2.6 Copper Hydroxide
93(3)
3.3 Binary and Ternary Hydroxides
96(5)
3.4 Summary
101(4)
References
105(8)
4 Polyaniline-Based Materials for Supercapacitors 113(18)
Asim A. Yaqoob
Mohamad N.M. Ibrahim
Akil Ahmad
Asma Khatoon
Siti H.M. Setapar
4.1 Introduction
113(1)
4.2 Significant Conducting Mechanism for Polyaniline
114(2)
4.3 Properties of PANI-Based Supercapacitors
116(2)
4.3.1 High-Rate Supercapacitors
116(1)
4.3.2 Electrolytic Capacitors
116(1)
4.3.3 Smart Supercapacitors
116(1)
4.3.4 Carbon Precursor
117(1)
4.3.5 Elastic Supercapacitors
117(1)
4.4 Significance and Role of PANI Supercapacitors
118(3)
4.5 Conclusion and Future Perspectives
121(1)
Acknowledgment
122(1)
References
123(8)
5 Perovskites for Supercapacitors 131(56)
Ehsan Rezaie
Abdollah Hajalilou
Yuanhai Su
5.1 Introduction
131(1)
5.2 Classifications and Structures of Perovskite Materials
132(9)
5.2.1 Stoichiometry Perovskite Structure
132(2)
5.2.2 Halide Double Perovskites
134(3)
5.2.3 Organic-Inorganic Hybrid Perovskites
137(1)
5.2.4 Cation- and Anion-Deficient Perovskite Structures
137(4)
5.3 Supercapacitance Performance of Perovskite Materials
141(34)
5.3.1 Capacitance Performance of Simple ABO3 Perovskites with Different Morphologies
142(10)
5.3.2 Effect of Element Doping in A-site on Supercapacitance Performance of Perovskite Materials
152(10)
5.3.3 Effect of Element Doping in B-site on Supercapacitance Performance of Perovskite Materials
162(6)
5.3.4 Effect of Cation Leaching on Capacitance Stability
168(7)
5.4 Summary
175(1)
Acknowledgment
175(1)
References
176(11)
6 General Synthesis Methods of Inorganic Materials for Supercapacitors 187(18)
Mehmet H. Calimli
Tugba G. Karahan
Anish Khan
Fatih Sen
6.1 Introduction
187(3)
6.2 Synthesis of Inorganic Supercapacitors
190(5)
6.2.1 Metal Oxides
190(16)
6.2.1.1 Synthesis of Electrode Materials
191(4)
6.3 Conclusions
195(1)
References
195(10)
7 Conducting Polymer Carbon-Based Binary Hybrid for Supercapacitors 205(20)
Rini Jain
Satyendra Mishra
7.1 Introduction
205(1)
7.2 Conducting Polymers
206(1)
7.2.1 Polyaniline (PANI)
206(1)
7.2.2 Polypyrrole (PPy)
206(1)
7.2.3 Poly(3,4-ethylenedioxythiphene) (PEDOT)
206(1)
7.3 CP Application in Supercapacitors
206(1)
7.3.1 Limitations of CP Electrode Supercapacitors
207(1)
7.4 Carbonaceous Materials Used as Fillers for Conducting Polymers
207(2)
7.4.1 Carbon Nanotubes
207(1)
7.4.2 Carbon Fibers (CFs)
208(1)
7.4.3 Graphene and Graphene Oxide (GO)
209(1)
7.4.4 Reduced Graphene Oxide (RGO)
209(1)
7.5 Nanocomposite Supercapacitor Application/Hybrid Supercapacitors
209(9)
7.5.1 CP/CNT Nanocomposites
210(2)
7.5.2 CPs/Graphene Composites
212(15)
7.5.2.1 CPs/Graphene Oxide
213(1)
7.5.2.2 CPs/Chemically Modified Graphene
214(4)
7.6 Conclusions, Future Prospects, and Challenges
218(1)
References
219(6)
8 New Inorganic Nanomaterials for Supercapacitors 225(20)
Mehmet H. Calimli
Gokcem Dasdemir
Anish Khan
Fatih Sen
8.1 Introduction
225(2)
8.2 Experimental
227(7)
8.2.1 Synthesis of ZnCo2O4@NiO/NF
227(2)
8.2.1.1 Preparation of Nickel Foam (NF) Substrate
227(1)
8.2.1.2 Synthesis of 2D ZnCo2O4/NF Nanoflake Structures
227(2)
8.2.2 Fabrication ZnWO4 Nanoparticles
229(2)
8.2.3 Procedure of Fabrication of δ-MnO2/HCS
231(1)
8.2.3.1 Fabrication of δ-MnO2
231(1)
8.2.3.2 Synthesis of HCS
232(1)
8.2.3.3 δ-MnO2/HCS Synthesis
232(1)
8.2.4 Procedure CoNi2S4 Ultrathin Nanosheets (Freestanding) Preparation
232(17)
8.2.4.1 Preparation of Ni0.75 Co0.25 (OH)2(CO3)0.125 Exhibiting Free Nanoscaled Sheets
232(1)
8.2.4.2 Fabrication of CoNi2S4 Ultrathin Freestanding Nanosheets
233(1)
8.3 Electrochemical Performance
234(3)
8.4 Conclusion
237(2)
References
239(6)
9 Metal Oxides for Supercapacitors 245(40)
Reza Ghaffari Adli
Yuanhai Su
Mir Ghasem Hosseini
Abdoflab Hajalilou
9.1 Introduction
245(2)
9.2 Electrochemical Measurements
247(2)
9.3 Characterization Methods of Electrode Materials
249(1)
9.4 Electrode Materials
249(22)
9.4.1 Transition Metal Oxides
250(13)
9.4.1.1 RuO2
250(1)
9.4.1.2 MnO2
251(2)
9.4.1.3 NiO
253(1)
9.4.1.4 Co3O4
254(1)
9.4.1.5 MoO2/MoO3
254(2)
9.4.1.6 SnO2
256(1)
9.4.1.7 Iron Oxides
256(2)
9.4.1.8 V2O5
258(1)
9.4.1.9 WO3
259(1)
9.4.1.10 Bi2O3
260(3)
9.4.2 Mixed Transition Metal Oxides
263(26)
9.4.2.1 Metal Cobaltite
263(3)
9.4.2.2 Metal Tungstate
266(1)
9.4.2.3 Metal Vanadates
266(4)
9.4.2.4 Metal Phosphate
270(1)
9.4.2.5 Metal Molybdats
270(1)
9.5 Conclusion and Future Research
271(1)
Acknowledgment
272(1)
References
272(13)
10 High-Surface Saccharum officinarum Based Materials for Supercapacitor Applications 285(14)
Divya Velpula
Shilpa Chakra Chidurala
Rakesh Kumar Thida
Shireesha Konda
10.1 Introduction
285(1)
10.2 Chemical Composition of SCB and SCBA
286(1)
10.3 Advantageous Utilizations of SCB and SCBA
287(1)
10.4 Applications of SCB and SCBA
287(2)
10.5 Organism-Based Materials as Supercapacitors
289(6)
10.5.1 Synthesis of Carbon-Based Materials from Saccharum officinarum for Supercapacitor Applications
290(9)
10.5.1.1 Carbon Aerogel
290(1)
10.5.1.2 Activated Carbon
291(1)
10.5.1.3 Hydrothermally Treated and Activated Carbon
292(3)
10.6 Conclusion and Future Research
295(1)
References
296(3)
11 Microwave-Assisted Graphene-Based Conducting Polymer Materials for Supercapacitors 299(28)
Senthil K. Kandasamy
Kavitha N. Singaram
Hemalatha Krishnamoorthy
Chandrasekaran Arumugam
Shanmugam Palanisamy
Kannan Kandasamy
Anish Khan
Abdullah M. Asiri
Hurija D. Cancar
11.1 Introduction
299(5)
11.1.1 EDLCs
302(1)
11.1.2 Pseudocapacitors
302(2)
11.2 Composites
304(1)
11.3 Microwave Annealing and Its Impacts
305(15)
11.3.1 Graphene Oxide/Polyaniline Composite
306(7)
11.3.1.1 Synthesis of Graphene Oxide/Polyaniline Composite
307(1)
11.3.1.2 Microwave Annealing of Graphene Oxide/Polyaniline Composite
308(1)
11.3.1.3 Effects of Microwave Treatment of Graphene Oxide/PANI and Feeding Ratio on Structural Properties
309(1)
11.3.1.4 Effects of Microwave Treatment of Graphene Oxide/PANI and Feeding Ratio on Electrochemical Analysis
310(3)
11.3.2 Graphene Oxide/Polypyrrole Composite
313(7)
11.3.2.1 Synthesis of Graphene Oxide/Polypyrrole Nanocomposite
316(1)
11.3.2.2 Microwave Annealing of Graphene Oxide/Polypyrrole Nanocomposite
317(1)
11.3.2.3 Effects of Microwave Treatment of Graphene Oxide/PPy and Feeding Ratio on Structural Properties
317(1)
11.3.2.4 Effects of Microwave Treatment of Graphene Oxide/PPy and Feeding Ratio on Electrochemical Analysis
318(2)
11.4 Conclusions and Future Work
320(1)
References
321(6)
Index 327
Rajender Boddula, PhD, is Research Fellow in the National Center for Nanoscience and Technology at the Chinese Academy of Sciences. He was formerly Senior Research Associate at the Aligarh Muslim University in India.

Anish Khan, PhD, is Assistant Professor in the Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah -21589, Saudi Arabia. He received his doctorate from Aligarh Muslim University in India.

Abdullah M. Asiri, PhD, is Professor in the Chemistry Department, Center of Excellence for Advanced Materials Research at King Abdulaziz University in Saudi Arabia. He received his PhD from University of Walls College of Cardiff in the United Kingdom.

Aleksandr E. Kolosov is Senior Researcher in the Department of Chemical Engineering of the National Technical University in Ukraine. His research focuses on functional nanomaterials and polymer composites.