Muutke küpsiste eelistusi

E-raamat: Hands-On Accelerator Physics Using MATLAB(R)

(Department of Physics and Astronomy, Uppsala University, Sweden)
  • Formaat: 372 pages
  • Ilmumisaeg: 29-Apr-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429957475
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 62,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 372 pages
  • Ilmumisaeg: 29-Apr-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429957475
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Awarded one of BookAuthority's best new Particle Physics books in 2019!

Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator.

This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field.

Features:





Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website

MATLAB live-scripts to accompany the book can be found here: https://ziemann.web.cern.ch/ziemann/mybooks/mlx/
Preface xi
Acknowledgments xiii
Chapter 1 Introduction and History
1(12)
Chapter 2 Reference System
13(14)
2.1 The Reference Trajectory
13(3)
2.2 Coordinate Transformations
16(2)
2.3 Particles and Their Description
18(1)
2.4 Particle Ensembles, Bunches
19(8)
Chapter 3 Transverse Beam Optics
27(58)
3.1 Magnets and Matrices
28(10)
3.1.1 Thin quadrupoles
29(2)
3.1.2 Thick quadrupoles
31(1)
3.1.3 Sector dipole
32(2)
3.1.4 Combined function dipole
34(1)
3.1.5 Rectangular dipole
35(1)
3.1.6 Coordinate rotation
36(1)
3.1.7 Solenoid
37(1)
3.1.8 Non-linear elements
37(1)
3.2 Propagating Particles and Beams
38(2)
3.3 Two-Dimensional
40(12)
3.3.1 Beam optics in MATLAB
40(2)
3.3.2 Poincare section and tune
42(2)
3.3.3 FODO cell and beta functions
44(3)
3.3.4 A complementary look at beta functions
47(2)
3.3.5 Beam size and emittance
49(3)
3.4 Chromaticity and Dispersion
52(8)
3.4.1 Chromaticity
52(2)
3.4.2 Dispersion
54(4)
3.4.3 Emittance generation
58(2)
3.4.4 Momentum compaction factor
60(1)
3.5 Four-Dimensional and Coupling
60(5)
3.6 Matching
65(5)
3.6.1 Matching the phase advance
65(1)
3.6.2 Match beta functions to a waist
66(2)
3.6.3 Point-to-point focusing
68(2)
3.7 Beam-Optical Systems
70(15)
3.7.1 Telescopes
70(1)
3.7.2 Triplets
71(3)
3.7.3 Doublets
74(1)
3.7.4 Achromats
75(2)
3.7.5 Multi-bend achromats
77(1)
3.7.6 TME cell
78(1)
3.7.7 Dispersion suppressor
79(1)
3.7.8 Interaction region
80(1)
3.7.9 Bunch compressors
81(4)
Chapter 4 Magnets
85(34)
4.1 Maxwell's Equations and Boundary Conditions
85(2)
4.2 2D-Geometries and Multipoles
87(2)
4.3 Iron-Dominated Magnets
89(12)
4.3.1 Simple analytical methods
89(2)
4.3.2 Using the MATLAB PDE toolbox
91(7)
4.3.3 Quadrupoles
98(1)
4.3.4 Technological aspects
99(2)
4.4 Super-Conducting Magnets
101(5)
4.4.1 Simple analytical methods
102(1)
4.4.2 PDE toolbox
103(3)
4.5 Permanent Magnets
106(8)
4.5.1 Multipoles
108(2)
4.5.2 Segmented multipoles
110(2)
4.5.3 Undulators and wigglers
112(2)
4.6 Magnet Measurements
114(5)
4.6.1 Hall probe
114(1)
4.6.2 Rotating coil
115(1)
4.6.3 Undulator measurements
116(3)
Chapter 5 Longitudinal Dynamics and Acceleration
119(24)
5.1 Pill-Box Cavity
120(4)
5.2 Transit-Time Factor
124(1)
5.3 Phase Stability and Synchrotron Oscillations
124(3)
5.4 Large-Amplitude Oscillations
127(6)
5.5 Rf Gymnastics
133(1)
5.6 Acceleration
134(3)
5.7 A Simple Worked Example
137(6)
Chapter 6 Radio-Frequency Systems
143(30)
6.1 Power Generation and Control
143(2)
6.2 Power Transport: Waveguides and Transmission Lines
145(8)
6.3 Couplers and Antennas
153(3)
6.4 Power to the Beam: Resonators and Cavities
156(7)
6.4.1 Losses and quality factor Q0 of a pill-box cavity
156(3)
6.4.2 General cavity geometry with the PDE toolbox
159(1)
6.4.3 Disk-loaded waveguides
160(3)
6.5 Technological Aspects
163(2)
6.5.1 Normal-conducting
163(1)
6.5.2 Super-conducting
164(1)
6.6 Interaction With the Beam
165(8)
6.6.1 Beam loading
165(1)
6.6.2 Steady-state operation
166(1)
6.6.3 Pulsed operation and transient beam loading
167(3)
6.6.4 Low-level RF system
170(3)
Chapter 7 Instrumentation and Diagnostics
173(20)
7.1 Zeroth Moment: Current
173(2)
7.2 First Moment: Beam Position and Arrival Time
175(5)
7.3 Second Moment: Beam Size
180(3)
7.4 Emittance and Beta Functions
183(2)
7.5 Specialty Diagnostics
185(8)
7.5.1 Turn-by-turn position monitor data analysis
186(2)
7.5.2 Beam-beam diagnostics
188(1)
7.5.3 Schottky diagnostics
189(4)
Chapter 8 Imperfections and Their Correction
193(28)
8.1 Sources of Imperfections
194(4)
8.1.1 Misalignment and feed down
194(2)
8.1.2 Tilted components
196(1)
8.1.3 Rolled elements and solenoids
197(1)
8.1.4 Chromatic effects
197(1)
8.1.5 Consequences
197(1)
8.2 Imperfections in Beam Lines
198(5)
8.2.1 Dipole kicks and orbit errors
198(1)
8.2.2 Quadrupolar errors and beam size
198(2)
8.2.3 Skew-quadrupolar perturbations
200(1)
8.2.4 Filamentation
201(2)
8.3 Imperfections In a Ring
203(4)
8.3.1 Misalignment and dipole kicks
203(1)
8.3.2 Gradient imperfections
204(1)
8.3.3 Skew-gradient imperfections
205(2)
8.4 Correction in Beam Lines
207(6)
8.4.1 Trajectory knobs and bumps
208(1)
8.4.2 Orbit correction
209(3)
8.4.3 Beta matching
212(1)
8.4.4 Dispersion and chromaticity
213(1)
8.5 Correction in Rings
213(8)
8.5.1 Orbit correction
214(1)
8.5.2 Dispersion-free steering
215(1)
8.5.3 Tune correction
215(1)
8.5.4 Chromaticity correction
216(1)
8.5.5 Coupling correction
217(1)
8.5.6 Orbit response-matrix based methods
217(1)
8.5.7 Feedback systems
218(3)
Chapter 9 Targets and Luminosity
221(20)
9.1 Event Rate and Luminosity
221(1)
9.2 Energy Loss and Straggling
222(4)
9.3 Transverse Scattering, Emittance Growth, and Life-Time
226(2)
9.4 Colliding Beams
228(1)
9.5 Beam-Beam Luminosity
229(4)
9.6 Incoherent Beam-Beam Tune Shift
233(2)
9.7 Coherent Beam-Beam Interactions
235(2)
9.8 Linear Colliders
237(4)
Chapter 10 Synchrotron Radiation and Free-Electron Lasers
241(18)
10.1 Effect on the Beam
242(5)
10.1.1 Longitudinally
242(2)
10.1.2 Vertically
244(1)
10.1.3 Horizontally
244(2)
10.1.4 Quantum lifetime
246(1)
10.2 Characteristics of the Emitted Radiation
247(4)
10.2.1 Dipole magnets
248(1)
10.2.2 Undulators and wigglers
249(2)
10.3 Small-Gain Free-Electron Laser
251(3)
10.3.1 Amplifier and oscillator
251(3)
10.4 Self-Amplified Spontaneous Emission
254(3)
10.5 Accelerator Challenges
257(2)
Chapter 11 Non-linear Dynamics
259(20)
11.1 A One-Dimensional Toy Model
259(2)
11.2 Tracking and Dynamic Aperture
261(2)
11.3 Hamiltonians and Lie-Maps
263(4)
11.3.1 Moving Hamiltonians
265(2)
11.3.2 Concatenating Hamiltonians
267(1)
11.4 Implementation in Matlab
267(4)
11.5 Two-Dimensional Model
271(1)
11.6 Knobs and Resonance-Driving Terms
272(3)
11.7 Non-Resonant Normal Forms
275(4)
Chapter 12 Collective Effects
279(16)
12.1 Space Charge
279(3)
12.2 Intrabeam Scattering and Touschek-Effect
282(1)
12.3 Wake Fields, Impedances, and Loss Factors
283(3)
12.4 Coasting-Beam Instability
286(2)
12.5 Single-Bunch Instabilities
288(3)
12.6 Multi-Bunch Instabilities
291(4)
Chapter 13 Accelerator Subsystems
295(24)
13.1 Control System
295(4)
13.1.1 Sensors, actuators, and interfaces
295(1)
13.1.2 System architecture
296(1)
13.1.3 Timing system
297(1)
13.1.4 An example: EPICS
297(2)
13.2 Particle Sources
299(5)
13.2.1 Electrons
299(2)
13.2.2 Protons and other ions
301(1)
13.2.3 Highly charged ions
302(1)
13.2.4 Negatively charged ions
302(1)
13.2.5 Radio-frequency quadrupole
303(1)
13.3 Injection and Extraction
304(2)
13.4 Beam Cooling
306(1)
13.5 Vacuum
307(5)
13.5.1 Vacuum basics
307(1)
13.5.2 Pumps and gauges
308(2)
13.5.3 Vacuum calculations
310(2)
13.6 Cryogenics
312(2)
13.7 Radiation Protection and Safety
314(3)
13.7.1 Units
315(1)
13.7.2 Range of radiation in matter
315(1)
13.7.3 Dose measurements
316(1)
13.7.4 Personnel and machine protection
316(1)
13.8 Conventional Facilities
317(2)
13.8.1 Electricity
317(1)
13.8.2 Water and cooling
317(1)
13.8.3 Buildings and shielding
318(1)
Chapter 14 Examples of Accelerators
319(12)
14.1 Cern and the Large Hadron Collider
319(2)
14.2 European Spallation Source
321(1)
14.3 Slac and the Linac Coherent Light Source
322(1)
14.4 Max-IV
323(1)
14.5 Tandem Accelerator in Uppsala
324(1)
14.6 Accelerators for Medical Applications
325(2)
14.7 Industrial Accelerators
327(4)
Appendix A The Student Labs
331(14)
A.1 Beam Profile of Laser Pointer
331(3)
A.2 Emittance Measurement With a Laser Pointer
334(1)
A.3 Halbach Multipoles and Undulators
335(4)
A.4 Magnet Measurements
339(2)
A.5 Cookie-Jar Cavity on a Network Analyzer
341(4)
Appendix B Appendices Available Online
345(2)
B.1 Linear Algebra
345(1)
B.2 Matlab Primer
345(1)
B.3 Openscad Primer
345(1)
B.4 Light Optics, Rays, and Gaussian
345(1)
B.5 Matlab Functions
345(2)
Bibliography 347(8)
Index 355
Volker Ziemann obtained his PhD in accelerator physics from Dortmund University in 1990. After post-doctoral positions in Stanford at SLAC and in Geneva at CERN, where he worked on the design of the LHC, in 1995 he moved to Uppsala where he worked at the electron-cooler storage ring CELSIUS. In 2005 he moved to the physics department where he has since taught physics. He was responsible for several accelerator physics projects at CERN, DESY and XFEL. In 2014 he received the Thuréus prize from the Royal Society of Sciences in Uppsala.