Muutke küpsiste eelistusi

E-raamat: Handwriting: Recognition, Development and Analysis

  • Formaat: 402 pages
  • Ilmumisaeg: 01-Jul-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536119572
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 339,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 402 pages
  • Ilmumisaeg: 01-Jul-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536119572
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book has the primary goal of presenting and discussing some recent advances and ongoing developments in the Handwritten Text Recognition (HTR) field, resulting from works done on different HTR-related topics for the achievement of more accurate and efficient recognition systems. Nowadays, there is an enormous worldwide interest in HTR systems, which is mostly driven by the emergence of new portable devices incorporating handwriting recognition functions. Others interests are the biometric identification systems employing handwritten signatures, as well as the requirements from cultural heritage institutions like historical archives and libraries in order to preserve their large collections of historical (handwritten) documents. The book is organized into two sections: the first one is mainly devoted to describing the current state-of-the-art applications in HTR and the last advances in some of the steps involved in HTR workflow (that is, preprocessing, feature extraction, recognition engines, etc.), whereas the second focuses more on some relevant HTR-related applications.In more depth, the first part offers an overview of the current state-of-the-art applications of HTR technology and introduces the new challenges and research opportunities in the field. Besides, it provides a general discussion of currently ongoing approaches towards solving the underlying search problems on the basis of existing methods for HTR in terms of both accuracy and efficiency. In particular, there are chapters especially focused on image thresholding and enhancement, text image preprocessing techniques for historical handwritten documents and feature extraction methods for HTR. Likewise, in line with the breakout success of Deep Neural Networks (DNNs) in the field, a whole chapter is devoted to describing the designing of HTR systems based on DNNs. Finally, a chapter listing the most used benchmarking datasets for HTR is also included, providing detailed information about which types of HTR systems (on/offline) and features are commonly considered for each of them.In the second part, several systems - also developed on the basis of the fundamental concepts and general approaches outlined in the first part - are described for several HTR-related applications. Presented in the corresponding chapters, these applications cover a wide spectrum of scenarios: mathematical formulae recognition, scripting language recognition, multimodal handwriting-speech recognition, hardware design for online HTR, student performance evaluation through handwriting analysis, performance evaluation methods, keyword spotting, and handwritten signature verification systems.Last but not least, it is important to remark that to a large extent, this book is the result of works carried out by several researchers in the Handwritten Text Recognition field.Therefore, it owes credit to these researchers that have directly contributed to their ideas, discussions and technical collaborations, and in general who, in one manner or another, have made it possible.
Preface vii
Part I Recognition and Development
1(166)
Chapter 1 Handwriting Recognition: Overview, Challenges and Future Trends
3(30)
Everton Barbosa Lacerda
Thiago Vinicius M. de Souza
Cleber Zanchettin
Juliano Cicero Bitu Rabelo
Lara Dantas Coutinho
Chapter 2 Thresholding
33(24)
Edward Roe
Carlos Alexandre Barros de Mello
Chapter 3 Historical Document Processing
57(38)
Basilis Gatos
Georgios Louloudis
Nikolaos Stamatopoulos
Giorgos Sfikas
Chapter 4 Wavelet Descriptors for Handwritten Text Recognition in Historical Documents
95(18)
Leticia M. Seijas
Byron L. D. Bezerra
Chapter 5 How to Design Deep Neural Networks for Handwriting Recognition
113(36)
Theodore Bluche
Christopher Kermorvant
Hermann Ney
Chapter 6 Handwritten and Printed Image Datasets: A Review and Proposals for Automatic Building
149(18)
Gearlles V. Ferreira
Felipe M. Gouveia
Byron L. D. Bezerra
Eduardo Muller
Cleber Zanchettin
Alejandro Toselli
Part II Analysis and Applications
167(220)
Chapter 7 Mathematical Expression Recognition
169(42)
Francisco Alvaro
Joan Andreu Sanchez
Jose Miguel Benedi
Chapter 8 Online Handwriting Recognition of Indian Scripts
211(16)
Umapada Pal
Nilanjana Bhattacharya
Chapter 9 Historical Handwritten Document Analysis of Southeast Asian Palm Leaf Manuscripts
227(50)
Made Windu Antara Kesiman
Jean-Christophe Burie
Jean-Marc Ogier
Gusti Ngurah Made Agus Wibawantara
I Made Gede Sunarya
Chapter 10 Using Speech and Handwriting in an Interactive Approach for Transcribing Historical Documents
277(20)
Emilio Granell
Veronica Romero
Carlos-D. Martinez-Hinarejos
Chapter 11 Handwritten Keyword Spotting the Query by Example (QbE) Case
297(24)
Georgios Barlas
Konstantinos Zagoris
Ioannis Pratikakis
Chapter 12 Handwriting-Enabled E-Paper Based on Twisting-Ball Display
321(12)
Yusuke Komazaki
Toru Torii
Chapter 13 Speed and Legibility: Brazilian Students Performance in a Thematic Writing Task
333(12)
Monique Herrera Cardoso
Simone Aparecida Capellin
Chapter 14 Datasets for Handwritten Signature Verification: A Survey and a New Dataset, the RPPDI-SigData
345(18)
Victor Kleber Santos Leite Melo
Byron Leite Dantas Bezerra
Rebecca H. S. N. Do Nascimento
Gabriel Calazans Duarte de Moura
Giovanni L. L. de S. Martins
Giuseppe Pirlo
Donato Impedovo
Chapter 15 Processing of Handwritten Online Signatures: An Overview and Future Trends
363(24)
Alessandro Balestrucci
Donato Impedovo
Giuseppe Pirlo
Editor's Contact Information 387(4)
Index 391