|
|
1 | (10) |
|
|
|
|
|
9 | (2) |
|
2 IAM-HistDB: A Dataset of Handwritten Historical Documents |
|
|
11 | (14) |
|
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (6) |
|
2.3.1 Saint Gall Database |
|
|
15 | (1) |
|
|
15 | (2) |
|
2.3.3 George Washington Database |
|
|
17 | (2) |
|
2.4 Semi-Automatic Ground Truth Creation |
|
|
19 | (2) |
|
|
21 | (4) |
|
|
22 | (3) |
|
3 DIVA-HisDB: A Precisely Annotated Dataset of Challenging Medieval Manuscripts |
|
|
25 | (20) |
|
Foteini Simistira Liwicki |
|
|
|
25 | (1) |
|
|
26 | (5) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
31 | (14) |
|
3.4.1 Evaluation and Results |
|
|
34 | (4) |
|
|
38 | (3) |
|
|
41 | (4) |
|
4 Layout Analysis in Handwritten Historical Documents |
|
|
45 | (22) |
|
|
|
45 | (1) |
|
4.2 Segmentation in Regions of Interest |
|
|
46 | (2) |
|
|
48 | (2) |
|
4.4 Typical Processing Steps |
|
|
50 | (4) |
|
|
50 | (2) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
4.5 Layout Analysis Methods |
|
|
54 | (8) |
|
4.5.1 Content Identification |
|
|
54 | (3) |
|
4.5.2 Text Line Segmentation |
|
|
57 | (5) |
|
|
62 | (5) |
|
4.6.1 Semantical Analysis of the Layout |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (3) |
|
5 Automatic Handwriting Recognition in Historical Documents |
|
|
67 | (14) |
|
|
|
67 | (2) |
|
5.2 Image Preprocessing and Feature Extraction |
|
|
69 | (1) |
|
|
70 | (4) |
|
5.3.1 HMM Character Models |
|
|
71 | (1) |
|
5.3.2 LSTM Character Models |
|
|
72 | (2) |
|
5.4 Automatic Transcription |
|
|
74 | (3) |
|
|
77 | (1) |
|
|
78 | (3) |
|
|
79 | (2) |
|
6 Handwritten Keyword Spotting in Historical Documents |
|
|
81 | (20) |
|
|
|
|
81 | (1) |
|
|
82 | (3) |
|
6.2.1 Example-Based Search Queries |
|
|
83 | (1) |
|
6.2.2 String-Based Search Queries |
|
|
84 | (1) |
|
6.2.3 Embedding-Based Search Queries |
|
|
84 | (1) |
|
6.3 LSTM NN-Based Keyword Spotting |
|
|
85 | (8) |
|
6.3.1 Document Representation |
|
|
86 | (1) |
|
6.3.2 LSTM Neural Networks |
|
|
87 | (1) |
|
6.3.3 Connectionist Temporal Classification |
|
|
88 | (2) |
|
6.3.4 Extending CTC for Efficient Keyword Spotting |
|
|
90 | (1) |
|
6.3.5 Experimental Evaluation |
|
|
91 | (2) |
|
6.4 Remarks and Further Research |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
95 | (6) |
|
|
97 | (4) |
|
7 DIVA Services - Transforming Document Analysis Methods into Web Services |
|
|
101 | (20) |
|
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
7.3.1 Web Services in Document Image Analysis |
|
|
103 | (1) |
|
7.3.2 Web Services in Other Fields |
|
|
104 | (1) |
|
7.4 DIVAServices - The RESTful Web Service Framework |
|
|
104 | (1) |
|
7.5 Core Interactions with DivaServices |
|
|
105 | (4) |
|
7.5.1 Accessing Method Information |
|
|
106 | (1) |
|
|
107 | (1) |
|
7.5.3 Execution of a Method |
|
|
108 | (1) |
|
7.6 Example Use of DivaServices |
|
|
109 | (5) |
|
7.6.1 Upload the Original Image |
|
|
110 | (1) |
|
|
111 | (1) |
|
7.6.3 Extracting Text Lines |
|
|
112 | (1) |
|
7.6.4 Performing Optical Character Recognition (OCR) |
|
|
113 | (1) |
|
7.7 The Ecosystem of DIVAServices |
|
|
114 | (3) |
|
7.7.1 DlVAServices-Spotlight |
|
|
115 | (1) |
|
7.7.2 DiVAServices-Weblnterface |
|
|
116 | (1) |
|
7.7.3 DiVAServices-Management |
|
|
117 | (1) |
|
7.8 Conclusion and Future Work |
|
|
117 | (4) |
|
|
118 | (3) |
|
8 GraphManuscribble: Interactive Annotation of Historical Manuscripts |
|
|
121 | (36) |
|
|
|
121 | (4) |
|
|
125 | (7) |
|
8.2.1 Document Segmentation and Annotation Systems |
|
|
125 | (4) |
|
8.2.2 Human-Computer Interaction in Image Segmentation |
|
|
129 | (3) |
|
|
132 | (12) |
|
8.3.1 Basic Definitions for Graphs |
|
|
132 | (1) |
|
|
133 | (3) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
8.3.6 Split Layout Elements |
|
|
139 | (1) |
|
8.3.7 Polygonal Graph Representation |
|
|
139 | (2) |
|
|
141 | (3) |
|
8.4 Graph-User-Interaction: Scribbling |
|
|
144 | (4) |
|
8.4.1 Scribbling as User Interaction Pattern |
|
|
145 | (2) |
|
8.4.2 User Interaction Evaluation |
|
|
147 | (1) |
|
8.5 Conclusions and Outlook |
|
|
148 | (9) |
|
|
149 | (6) |
|
Related Research Projects |
|
|
155 | (2) |
|
9 OldDocPro: Old Greek Document Recognition |
|
|
157 | (18) |
|
|
|
|
|
|
|
Foteini Simistira Liwicki |
|
|
|
|
|
157 | (2) |
|
9.2 The GRPOLY-DB Database |
|
|
159 | (3) |
|
|
162 | (3) |
|
9.3.1 Performance Evaluation of Page Segmentation |
|
|
162 | (1) |
|
|
162 | (2) |
|
9.3.3 Document Image Segmentation Representation |
|
|
164 | (1) |
|
|
165 | (3) |
|
9.4.1 Isolated Character Recognition |
|
|
165 | (2) |
|
9.4.2 Text Line Recognition |
|
|
167 | (1) |
|
|
168 | (3) |
|
|
171 | (4) |
|
|
172 | (3) |
|
10 Advances in Handwritten Keyword Indexing and Search Technologies |
|
|
175 | (20) |
|
|
|
|
|
175 | (3) |
|
10.2 Proposed Indexing and Search Technology |
|
|
178 | (4) |
|
10.2.1 Pixel-Level Word Relevance Probabilities: the "Posteriorgram" |
|
|
179 | (1) |
|
10.2.2 Image Region Word Relevance Probabilities |
|
|
180 | (1) |
|
10.2.3 Minimal Searchable Image Regions: Line-Level KWS |
|
|
181 | (1) |
|
10.2.4 Efficient Computation of Posteriorgrams and Relevance Probabilities |
|
|
181 | (1) |
|
|
182 | (3) |
|
10.4 Experimental Framework |
|
|
185 | (2) |
|
|
185 | (1) |
|
10.4.2 Dataset Usage Details and Query Set Selection |
|
|
185 | (1) |
|
10.4.3 Evaluation Measures |
|
|
186 | (1) |
|
|
187 | (1) |
|
10.6 Demonstration Systems |
|
|
188 | (1) |
|
10.7 Conclusion and Outlook |
|
|
189 | (6) |
|
|
191 | (4) |
|
11 Browsing of the Social Network of the Past: Information Extraction from Population Manuscript Images |
|
|
195 | (26) |
|
|
|
|
|
195 | (3) |
|
11.2 Population Records and Datasets |
|
|
198 | (2) |
|
|
200 | (2) |
|
11.4 Image Capture and Document Enhancement |
|
|
202 | (2) |
|
11.4.1 Layout Analysis and Text Line Extraction |
|
|
202 | (2) |
|
|
204 | (4) |
|
|
204 | (3) |
|
11.5.2 Handwritten Text Recognition |
|
|
207 | (1) |
|
|
208 | (3) |
|
11.6.1 Named Entity Recognition |
|
|
208 | (1) |
|
11.6.2 Context-Aware Transcription |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
211 | (4) |
|
11.7.1 Crowdsourcing Applications |
|
|
212 | (2) |
|
|
214 | (1) |
|
|
215 | (2) |
|
|
217 | (4) |
|
|
218 | (3) |
|
12 Lifelong Learning for Text Retrieval and Recognition in Historical Handwritten Document Collections |
|
|
221 | (28) |
|
|
|
221 | (5) |
|
12.2 Expectation Management |
|
|
226 | (5) |
|
|
231 | (1) |
|
12.4 The Ball-Park Principle |
|
|
232 | (3) |
|
12.5 Technical Realization |
|
|
235 | (5) |
|
|
236 | (1) |
|
12.5.2 Quality and Quantity of Material |
|
|
236 | (1) |
|
12.5.3 Industrialization and Scalability |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
12.5.6 Object of Recognition: Whole-Word Approaches |
|
|
237 | (1) |
|
12.5.7 Processing Pipeline |
|
|
238 | (2) |
|
|
240 | (3) |
|
|
243 | (1) |
|
|
243 | (6) |
|
|
246 | (3) |
|
13 Conclusions and Future Trends |
|
|
249 | (4) |
|
|
|
Index |
|
253 | |