Muutke küpsiste eelistusi

E-raamat: Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces: A Sharp Theory

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2142
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319181325
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2142
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319181325
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from H

ardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.

Introduction. - Geometry of Quasi-Metric Spaces.- Analysis on Spaces of Homogeneous Type.- Maximal Theory of Hardy Spaces.- Atomic Theory of Hardy Spaces.- Molecular and Ionic Theory of Hardy Spaces.- Further Results.- Boundedness of Linear Operators Defined on Hp(X).- Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces.
1 Introduction
1(32)
1.1 Historical Notes and Motivation
1(8)
1.2 Sampling the Principal Results
9(3)
1.3 Examples
12(7)
1.4 Sharpness
19(7)
1.5 Approach and Main Tools
26(3)
1.6 An Overview of the Contents of Subsequent
Chapters
29(4)
2 Geometry of Quasi-Metric Spaces
33(38)
2.1 Quasi-Metric Spaces
33(6)
2.2 A Whitney-Type Decomposition and Partition of Unity
39(5)
2.3 Vitali-Type Covering Lemma on Quasi-Metric Spaces
44(3)
2.4 Ahlfors-Regular Quasi-Metric Spaces
47(15)
2.5 The Smoothness Indices of a Quasi-Metric Space
62(9)
3 Analysis on Spaces of Homogeneous Type
71(50)
3.1 More on the Regularization of a Quasi-Distance
74(5)
3.2 The Hardy-Littlewood Maximal Operator
79(8)
3.3 A Sharp Version of Lebesgue's Differentiation Theorem
87(14)
3.4 A Maximally Smooth Approximation to the Identity
101(13)
3.5 Dyadic Decompositions of Spaces of Homogeneous Type
114(7)
4 Maximal Theory of Hardy Spaces
121(40)
4.1 Distribution Theory on Quasi-Metric Spaces
123(7)
4.2 A Grand Maximal Function Characterization of Hardy Spaces
130(11)
4.3 Nature of Hp(X) When p (1, ∞]
141(18)
4.4 The Completeness of Hp(X)
159(2)
5 Atomic Theory of Hardy Spaces
161(104)
5.1 Atomic Characterization of Hardy Spaces
162(38)
5.2 Calderon-Zygmund-Type Decompositions
200(31)
5.3 Decomposing Distributions into Atoms
231(34)
6 Molecular and Ionic Theory of Hardy Spaces
265(28)
6.1 Molecular Characterization of Hardy spaces
266(15)
6.2 Ionic Characterization of Hardy Spaces
281(7)
6.3 Main Theorem Concerning Alternative Characterizations of Hardy Spaces
288(5)
7 Further Results
293(60)
7.1 The Measure Quasi-Distance and Relations to Other Hardy Spaces
294(28)
7.2 The Dual of Hp(X)
322(4)
7.3 More on Atomic Decompositions
326(20)
7.4 Dense Subspaces of Hp(X)
346(7)
8 Boundedness of Linear Operators Defined on Hp(X)
353(96)
8.1 General Classes of Topological Vector Spaces
356(15)
8.2 Boundedness Criteria and Applications
371(63)
8.2.1 Main Results
371(19)
8.2.2 Operators Bounded on Lebesgue Spaces
390(5)
8.2.3 Fractional Integral Operators on Hardy Spaces
395(13)
8.2.4 Square Function Estimates in Spaces of Homogeneous Type
408(8)
8.2.5 The Dirichlet Problem for Elliptic Systems in the Upper-Half Space
416(18)
8.3 Integral Operators of Calderon-Zygmund Type
434(15)
9 Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces
449(22)
9.1 Definitions with Sharp Ranges of Indices and Basic Results
450(8)
9.2 Atomic and Molecular Theory
458(5)
9.3 Calderon's Reproducing Formula and Frame Theory
463(4)
9.4 Interpolation of Besov and Triebel-Lizorkin Spaces via the Real Method
467(4)
References 471(8)
Symbol Index 479(4)
Subject Index 483