Muutke küpsiste eelistusi

E-raamat: Harmonic Analysis and Gamma Functions on Symplectic Groups

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Over a p-adic local field F of characteristic zero, we develop a new type of harmonic analysis on an extended symplectic group G = Gm × Sp2n. It is associated to the Langlands ?-functions attached to any irreducible admissible representations ? ? ? of G(F) and the standard representation ? of the dual group G?(C), and confirms a series of the conjectures in the local theory of the Braverman-Kazhdan proposal (Braverman and Kazhdan, 2000) for the case under consideration. Meanwhile, we develop a new type of harmonic analysis on GL1(F), which is associated to a ?-function ??(?s) (a product of n + 1 certain abelian ?-functions). Our work on GL1(F) plays an indispensable role in the development of our work on G(F). These two types of harmonic analyses both specialize to the well-known local theory developed in Tate's thesis (Tate, 1950) when n = 0. The approach is to use the compactification of Sp2n in the Grassmannian variety of Sp4n, with which we are able to utilize the well developed local theory of Piatetski-Shapiro and Rallis (1986) and many other works) on the doubling local zeta integrals for the standard L-functions of Sp2n.

The method can be viewed as an extension of the work of Godement-Jacquet (1972) for the standard L-function of GLn and is expected to work for all classical groups. We will consider the Archimedean local theory and the global theory in our future work.
Chapters
1. Introduction
2. Local Theory of Piatetski-Shapiro and Rallis
3. Functional Equation for $\beta _\psi (\chi _s)$
4. Harmonic Analysis for $\beta _\psi (\chi _s)$
5. $\eta _{\mathrm {pvs},\psi }$-Fourier Transform on $X_{P_{\Delta }}$
6. Harmonic Analysis on ${\mathbb {G}}_m\times {\mathrm {Sp}}_{2n}$
7. Multiplicity One and Gamma Functions
8. Theorems 1.2, 1.3, and 1.4
Dihua Jiang, University of Minnesota, Minneapolis, MN.

Zhilin Luo, University of Chicago, IL.

Lei Zhang, National University of Singapore, Singapore.