|
|
|
1.1 Motivation and Background |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.3 Before Reading the Book |
|
|
3 | (2) |
|
|
5 | (18) |
|
2.1 Continuous Functions and Lebesgue Spaces |
|
|
5 | (10) |
|
2.1.1 Continuous Functions |
|
|
5 | (2) |
|
|
7 | (4) |
|
2.1.3 The Hardy--Littlewood Maximal Function |
|
|
11 | (1) |
|
2.1.4 Calderon--Zygmund Decomposition |
|
|
12 | (2) |
|
2.1.5 Absolute Continuity |
|
|
14 | (1) |
|
2.2 Functions of Bounded Variation |
|
|
15 | (8) |
|
|
23 | (24) |
|
3.1 Definition and Basic Properties |
|
|
23 | (4) |
|
|
27 | (6) |
|
|
33 | (3) |
|
|
36 | (3) |
|
|
39 | (2) |
|
3.6 Trigonometric Series Versus Fourier Series |
|
|
41 | (6) |
|
|
47 | (24) |
|
4.1 Definitions and Around |
|
|
47 | (7) |
|
4.2 From Discussion to Calculations |
|
|
54 | (3) |
|
4.3 Poisson Summation Formula |
|
|
57 | (2) |
|
|
59 | (2) |
|
|
61 | (10) |
|
4.5.1 Summability and Poisson Summation |
|
|
63 | (2) |
|
4.5.2 Wiener Algebras and Bounded Variation |
|
|
65 | (6) |
|
|
71 | (30) |
|
5.1 Definitions and Calculations |
|
|
72 | (2) |
|
5.2 The Hilbert Transform Comes into Play |
|
|
74 | (3) |
|
5.3 Existence Almost Everywhere |
|
|
77 | (4) |
|
|
77 | (3) |
|
|
80 | (1) |
|
5.4 Integrabiliry of the Hilbert Transform |
|
|
81 | (3) |
|
5.5 Special Cases of the Hilbert Transform |
|
|
84 | (10) |
|
5.5.1 Conditions for the Integrability of the Hilbert Transform |
|
|
88 | (3) |
|
|
91 | (3) |
|
5.6 Summability to the Hilbert Transform |
|
|
94 | (7) |
|
6 Hardy Spaces and their Subspaces |
|
|
101 | (30) |
|
|
102 | (1) |
|
6.2 Atomic Characterization |
|
|
103 | (6) |
|
|
103 | (2) |
|
6.2.2 Atomic Proof of the Fourier--Hardy Inequality |
|
|
105 | (1) |
|
|
106 | (2) |
|
6.2.4 More About Atomic Characterization |
|
|
108 | (1) |
|
6.3 Molecular Characterization |
|
|
109 | (4) |
|
|
113 | (5) |
|
6.5 A Paley--Wiener Theorem |
|
|
118 | (2) |
|
6.6 Discrete Hardy Spaces |
|
|
120 | (5) |
|
6.7 Back to Trigonometric Series |
|
|
125 | (6) |
|
|
131 | (10) |
|
7.1 Discrete Hardy Inequality |
|
|
133 | (2) |
|
7.2 Hardy Inequalities for Hausdorff Operators |
|
|
135 | (6) |
|
|
141 | (42) |
|
8.1 Interpolation Properties of a Scale of Spaces |
|
|
141 | (10) |
|
|
143 | (1) |
|
|
144 | (7) |
|
8.2 Fourier Re-expansions |
|
|
151 | (6) |
|
|
157 | (6) |
|
8.3.1 Proof of the Main Theorem |
|
|
159 | (3) |
|
8.3.2 Proof of the Corollary |
|
|
162 | (1) |
|
8.3.3 Proof of the Extended Theorem |
|
|
162 | (1) |
|
|
163 | (5) |
|
8.5 Salem Type Conditions |
|
|
168 | (4) |
|
8.5.1 Non-periodic Salem Conditions |
|
|
169 | (1) |
|
|
170 | (2) |
|
8.6 L1 Convergence of Fourier Transforms |
|
|
172 | (8) |
|
|
175 | (3) |
|
8.6.2 Application to Trigonometric Series |
|
|
178 | (2) |
|
8.7 More About Applications |
|
|
180 | (3) |
Basic Notations |
|
183 | (4) |
Bibliography |
|
187 | (8) |
Index |
|
195 | |