Muutke küpsiste eelistusi

E-raamat: Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods

(Technical University of Denmark, Denmark), (National Taiwan University of Science and Technology, Taiwan), (National Taiwan University of Science and Technology, Taiwan), (National Taiwan University of Science and Technology, Taiwan)
  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 01-Nov-2021
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119527152
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 151,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 01-Nov-2021
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119527152
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods One of the first books to bridge the gap between frequency domain and time-domain methods of steady-state modeling of power electronic converters

Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods presents detailed coverage of steady-state modeling of power electronic devices (PEDs). This authoritative resource describes both large-signal and small-signal modeling of power converters and how some of the simple and commonly used numerical methods can be applied for harmonic analysis and modeling of power converter systems. The book covers a variety of power converters including DC-DC converters, diode bridge rectifiers (AC-DC), and voltage source converters (DC-AC).

The authors provide in-depth guidance on modeling and simulating power converter systems. Detailed chapters contain relevant theory, practical examples, clear illustrations, sample Python and MATLAB codes, and validation enabling readers to build their own harmonic models for various PEDs and integrate them with existing power flow programs such as OpenDss.

This book:





Presents comprehensive large-signal and small-signal harmonic modeling of voltage source converters with various topologies Describes how to use accurate steady-state models of PEDs to predict how device harmonics will interact with the rest of the power system Explains the definitions of harmonics, power quality indices, and steady-state analysis of power systems Covers generalized steady-state modeling techniques, and accelerated methods for closed-loop converters Shows how the presented models can be combined with neural networks for power system parameter estimations

Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods is an indispensable reference and guide for researchers and graduate students involved in power quality and harmonic analysis, power engineers working in the field of harmonic power flow, developers of power simulation software, and academics and power industry professionals wanting to learn about harmonic modeling on power converters.
Preface xiii
Acknowledgments xvii
List of Symbols
xix
1 Fundamental Theory
1(36)
1.1 Background
1(1)
1.2 Definition of Harmonics
2(1)
1.3 Fourier Series
2(3)
1.3.1 Trigonometric Form
3(1)
1.3.2 Phasor Form
4(1)
1.3.3 Exponential Form
4(1)
1.4 Waveform Symmetry
5(3)
1.4.1 Even Symmetry
5(1)
1.4.2 Odd Symmetry
6(1)
1.4.3 Half-Wave Symmetry
6(2)
1.5 Phase Sequence of Harmonics
8(1)
1.6 Frequency Domain and Harmonic Domain
8(1)
1.7 Power Definitions
9(2)
1.7.1 Average Power
9(1)
1.7.2 Apparent and Reactive Power
9(2)
1.8 Harmonic Indices
11(2)
1.8.1 Total Harmonic Distortion (THD)
11(1)
1.8.2 Total Demand Distortion (TDD)
12(1)
1.8.3 True Power Factor
12(1)
1.9 Detrimental Effects of Harmonics
13(6)
1.9.1 Resonance
13(4)
1.9.2 Misoperations of Meters and Relays
17(1)
1.9.3 Harmonics Impact on Motors
18(1)
1.9.4 Harmonics Impact on Transformers
18(1)
1.10 Characteristic Harmonic and Non-Characteristic Harmonic
19(2)
1.11 Harmonic Current Injection Method
21(1)
1.12 Steady-State vs. Transient Response
21(1)
1.13 Steady-State Modeling
22(2)
1.14 Large-Signal Modeling vs. Small-Signal Modeling
24(1)
1.15 Discussion of IEEE Standard (STD) 519
25(5)
1.16 Supraharmonics
30(7)
2 Power Electronics Basics
37(12)
2.1 Some Basics
37(1)
2.2 Semiconductors vs. Wide Bandgap Semiconductors
38(2)
2.3 Types of Static Switches
40(4)
2.3.1 Uncontrolled Static Switch
40(1)
2.3.2 Semi-Controllable Switches
41(1)
2.3.3 Controlled Switch
42(2)
2.4 Combination of Switches
44(1)
2.5 Classification Based on Commutation Process
45(1)
2.6 Voltage Source Converter vs. Current Source Converter
46(3)
3 Basic Numerical Iterative Methods
49(24)
3.1 Definition of Error
49(1)
3.2 The Gauss--Seidel Method
50(2)
3.3 Predictor-Corrector
52(3)
3.4 Newton's Method
55(16)
3.4.1 Root Finding
55(1)
3.4.2 Numerical Integration
56(1)
3.4.3 Power Flow
57(4)
3.4.4 Harmonic Power Flow
61(2)
3.4.5 Shooting Method
63(4)
3.4.6 Advantages of Newton's Method
67(2)
3.4.7 Quasi-Newton Method
69(2)
3.4.8 Limitation of Newton's Method
71(1)
3.5 PSO
71(2)
4 Matrix Exponential
73(22)
4.1 Definition of Matrix Exponential
74(1)
4.2 Evaluation of Matrix Exponential
75(5)
4.2.1 Inverse Laplace Transform
75(1)
4.2.2 Cayley--Hamilton Method
76(2)
4.2.3 Pade Approximation
78(2)
4.2.4 Scaling and Squaring
80(1)
4.3 Krylov Subspace Method
80(3)
4.4 Krylov Space Method with Restarting
83(3)
4.5 Application of Augmented Matrix on DC-DC Converters
86(4)
4.6 Runge--Kutta Methods
90(5)
5 Modeling of Voltage Source Converters
95(54)
5.1 Single-Phase Two-Level VSCs
95(4)
5.1.1 Switching Functions
95(2)
5.1.2 Switched Circuits
97(2)
5.2 Three-Phase Two-Level VSCs
99(13)
5.3 Three-Phase Multilevel Voltage Source Converter
112(37)
5.3.1 Multilevel PWM
112(2)
5.3.2 Diode Clamped Multilevel VSCs
114(6)
5.3.3 Flying Capacitor Multilevel VSCs
120(8)
5.3.4 Cascaded Multi-Level VSCs
128(12)
5.3.5 Modular Multi-Level VSC
140(9)
6 Frequency Coupling Matrices
149(30)
6.1 Construction of FCM in the Harmonic Domain
149(6)
6.2 Construction of FCM in the Time Domain
155(24)
7 General Control Approaches of a VSC
179(14)
7.1 Reference Frame
179(4)
7.1.1 Stationary-abc Frame
179(1)
7.1.2 Stationary-αβ Frame
180(1)
7.1.3 Synchronous-dq Frame
181(1)
7.1.4 Phase-Locked Loop
182(1)
7.2 Control Strategies
183(10)
7.2.1 Vector-Current Controller
183(3)
7.2.2 Direct Power Controller
186(2)
7.2.3 DC-bus Voltage Controller
188(1)
7.2.4 Circulating Current Controller
189(4)
8 Generalized Steady-State Solution Procedure for Closed-Loop Converter Systems
193(12)
8.1 Introduction
193(1)
8.2 Generalized Procedure
193(4)
8.2.1 Step 1: Determine How and Where to Break the Loop
195(1)
8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible
195(1)
8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled
196(1)
8.2.4 Step 4: Formulate the Mismatch Equations
197(1)
8.2.5 Step 5: Iterate to Find the Solution
197(1)
8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures
197(3)
8.3.1 Steady-State Methods Derived from Loop-Breaking 1 Method
197(1)
8.3.2 Steady-State Methods Derived from Loop-Breaking 2 Method
198(2)
8.4 The Loop-Breaking 3 Method
200(5)
9 Loop-Breaking 1 Method
205(40)
9.1 A Typical Two-Level VSC with AC Current Control and DC Voltage Control
205(1)
9.2 Loop-Breaking 1 Method for a Two-Level VSC
206(4)
9.2.1 Block 1
208(1)
9.2.2 Current Controller Block
208(2)
9.2.3 Voltage Controller Block
210(1)
9.3 Solution Flow Diagram
210(35)
9.3.1 Initialization
212(1)
9.3.2 Jacobian Matrix
212(16)
9.3.3 Number of Modulating Voltage Harmonics to be Included
228(17)
10 Loop-Breaking 2 Method for Solving a VSC
245(48)
10.1 Modeling for a Closed-Loop DC-DC Converter
245(7)
10.1.1 Model of the Buck Converter
245(2)
10.1.2 Constraints of Steady-State
247(1)
10.1.3 Switching Time Constraints
248(1)
10.1.4 Solution Flow Diagram
248(4)
10.2 Two-Level VSC Modeling: Open-Loop Equations
252(18)
10.2.1 Steady-State Constraints
256(1)
10.2.2 Switching Time Constraints
257(3)
10.2.3 Solution Flow Diagram
260(1)
10.2.4 Initialization
260(1)
10.2.5 Jacobian Matrix
260(9)
10.2.6 Discussions of Results
269(1)
10.3 Comparison Between the LB 1 and LB 2 Methods
270(2)
10.3.1 Case #1: Balanced System
270(1)
10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half-Wave Symmetry
270(2)
10.3.3 Case #3: Unbalanced System, No Waveform Symmetry
272(1)
10.4 Large-Signal Modeling for Line-Commutated Power Converter
272(21)
10.4.1 Discontinuous Conduction Mode
273(9)
10.4.2 Continuous Conduction Mode
282(2)
10.4.3 Steady-State Constraint Equations
284(7)
10.4.4 General Comments
291(2)
11 Loop-Breaking 3 Method
293(22)
11.1 OpenDSS
293(1)
11.2 Interfacing OpenDSS with MATLAB
294(5)
11.3 Interfacing OpenDSS with Harmonic Models of VSCs
299(16)
12 Small-Signal Harmonic Model of a VSC
315(20)
12.1 Problem Statement
315(1)
12.2 Gauss-Seidel LB 3 and Newton LB 3
316(4)
12.2.1 Current Injection Method
316(1)
12.2.2 Norton Circuit Method
317(3)
12.3 Small-Signal Analysis of DC-DC Converter
320(5)
12.4 Small-Signal Analysis of a Two-Level VSC
325(10)
12.4.1 Approach from Section 12.3
325(1)
12.4.2 Simpler Approach
326(9)
13 Parameter Estimation for a Single VSC
335(14)
13.1 Background on Parameter Estimation
335(2)
13.2 Parameter Estimator Based on White-Box-and-Black-Box Models
337(2)
13.3 Estimation Validations
339(10)
13.3.1 Experimental Validation
340(3)
13.3.2 PSCAD/EMTDC Validation
343(6)
14 Parameter Estimation for Multiple VSCs with Domain Adaptation
349(30)
14.1 Introduction of Deep Learning
349(2)
14.2 Domain Adaptation
351(1)
14.3 Parameter Estimation for Multiple VSCs
352(1)
14.4 Notations for DA
353(2)
14.5 Supervised Domain Adaptation for Regression
355(1)
14.6 Supervised Domain Adaptation for Classification
356(2)
14.7 Test Setup
358(3)
14.7.1 Data Generator
359(1)
14.7.2 Data Preprocessing
359(2)
14.8 Performance Metrics
361(2)
14.8.1 R square (Regression)
361(1)
14.8.2 Mean Absolute Percentage Error, MAPE (Regression)
361(1)
14.8.3 Accuracy (Classification)
362(1)
14.8.4 F1 score (Classification)
362(1)
14.9 Test Results
363(7)
14.9.1 Classification Task on Multiple VSC
363(1)
14.9.2 Regression Task on Multiple VSC
363(7)
14.10 Software for Running the Codes
370(1)
14.11 Implementation of Domain Adaptation
370(9)
14.11.1 Data Generation
370(2)
14.11.2 Regression
372(3)
14.11.3 Classification network
375(4)
References 379(10)
Index 389
Ryan Kuo-Lung Lian, Professor, Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. He has been working in power system modeling for more than 10 years. His research interests are in power quality analysis, energy management systems, renewable energy systems, real time simulation, and power electronic control systems. Dr. Lian received his Ph.D. degree in Electrical Engineering from the University of Toronto, Canada, and he is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE).

Ramadhani Kurniawan Subroto, Postdoctoral Researcher, Department of Electrical Engineering, Technical University of Denmark, Denmark. Dr. Subroto received his Ph.D. degree in Electrical Engineering from National Taiwan University of Science and Technology, Taiwan in 2021. His research interests include power converter control, power system control, energy storage control, model predictive control, sliding mode control, and harmonics modeling of power converter.

Victor Andrean, received his M.Sc. degree from the Department of Electrical Engineering at National Taiwan University of Science and Technology, Taipei City, Taiwan, in 2019. Victor is currently working as a data scientist for HedgeDesk, CA, USA.

Bing Hao Lin, Associate Researcher, Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan. He received his B.Sc. and M.Sc. degrees in Electrical Engineering from the National Taiwan University of Science and Technology in 2018 and 2020, respectively.