Muutke küpsiste eelistusi

E-raamat: Harnessing Performance Variability in Embedded and High-performance Many/Multi-core Platforms: A Cross-layer Approach

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Oct-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319919621
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Oct-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319919621

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes the state-of-the art of industrial and academic research in the architectural design of heterogeneous, multi/many-core processors. The authors describe methods and tools to enable next-generation embedded and high-performance heterogeneous processors to confront cost-effectively the inevitable variations by providing Dependable-Performance: correct functionality and timing guarantees throughout the expected lifetime of a platform under thermal, power, and energy constraints. Various aspects of the reliability problem are discussed, at both the circuit and architecture level, the intelligent selection of knobs and monitors in multicore platforms, and systematic design methodologies. The authors demonstrate how new techniques have been applied in real case studies from different applications domain and report on results and conclusions of those experiments.

  •          Enables readers to develop performance-dependable heterogeneous multi/many-core architectures
  •          Describes system software designs that support high performance dependability requirements
  •          Discusses and analyzes low level methodologies to tradeoff conflicting metrics, i.e. power, performance, reliability and thermal management
  •          Includes new application design guidelines to improve performance dependability

 

1 The HARPA Approach to Ensure Dependable Performance
1(22)
Nikolaos Zompakis
Michail Noltsis
Panagiota Nikolaou
Panayiotis Englezakis
Zacharias Hadjilambrou
Lorena Ndreu
Giuseppe Massari
Simone Libutti
Antoni Portero
Federico Sassi
Alessandro Bacchini
Chrysostomos Nicopoulos
Yiannakis Sazeides
Radim Vavrik
Martin Golasowski
Jiri Sevcik
Stepan Kuchar
Vit Vondrak
Fritsch Agnes
Hans Cappelle
Francky Catthoor
William Fornaciari
Dimitrios Soudris
Part I
2 Trends in Processor Architecture
23(20)
Antonio Gonzalez
3 Aging Effects: From Physics to CAD
43(30)
Hussam Amrouch
Heba Khdr
Jorg Henkel
Part II OS Layer
4 The HARPA-OS
73(34)
Simone Libutti
Giuseppe Massari
William Fornaciari
5 Event-Based Thermal Control for High Power Density Microprocessors
107(24)
Ederico Terraneo
Alberto Leva
William Fornaciari
Part III HARPA-RT Layer
6 HARPA RT
131(20)
Dimitrios Rodopoulos
Nikolaos Zompakis
Michail Noltsis
Francky Catthoor
Dimitrios Soudris
7 Improving Robustness of a Real-Time Spectrum Sensing Application with the HARPA Run-Time Engine
151(16)
Hans Cappelle
Michail Noltsis
Simone Corbetta
Francky Catthoor
Part IV Knobs and Monitors
8 Evaluating System-Level Monitors and Knobs on Real Hardware
167(20)
Panagiota Nikolaou
Zacharias Hadjilambrou
Panayiotis Englezakis
Lorena Ndreu
Chrysostomos Nicopoulos
Yiannakis Sazeides
Antoni Portero
Radim Vavrik
Vit Vondrak
9 Monitor and Knob Techniques in Network-on-Chip Architectures
187(30)
Davide Zoni
Panayiotis Englezakis
Kypros Chrysanthou
Andrea Canidio
Andreas Prodromou
Andreas Panteli
Chrysostomos Nicopoulos
Giorgos Dimitrakopoulos
Yiannakis Sazeides
William Fornaciari
Part V Technology Related Reliability Approach
10 Time-Efficient Modeling and Simulation of True Workload Dependency for BTI-Induced Degradation in Processor-Level Platform Specifications
217(20)
Simone Corbetta
Pieter Weckx
Dimitrios Rodopoulos
Dimitrios Stamoulis
Francky Catthoor
11 Proof-of-Concept HARPA Measurement-Based Platform Modelling Framework
237(28)
Simone Corbetta
Wim Meeus
Etienne Cappe
Francky Catthoor
Agnes Fritsch
Part VI Applications
12 Floreon+ Modules: A Real-World HARPA Application in the High-End HPC System Domain
265(30)
Antoni Portero
Radim Vavrik
Martin Golasowski
Jiri Sevcik
Giuseppe Massari
Simone Libutti
William Fornaciari
Stepan Kuchar
Vit Vondrak
13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End Embedded System Domain
295(24)
Federico Sassi
Alessandro Bacchini
Giuseppe Massari
Index 319
William Fornaciari is Associate Professor at Politecnico di Milano, Dipartimento di Elettronica e Informazione. He published six books and over 150 papers in international journals and conference proceedings, collecting five best paper awards, one certification of appreciation from IEEE and holds two international patents on low power design solutions. Since 1993 he is member of program and scientific committees and chair of international conferences in the field of computer architectures, EDA and system-level design. Since 1997 has been involved in 13 EU-funded international projects and he has been part of the pool of experts of the Call For Tender No.964-2005 WING Watching IST INnovation and knowledge, studying the impact of FP5 and FP6 expenditure for the EC, in the perspective to support the identification of FP7 and Horizon2020 research directions.





 

Recently, he participated to the MULTICUBE project for design space exploration and to the IP WASP on wireless sensor networks. In FP7 he has been workpackage leader for the IP COMPLEX project and Project Technical Manager of 2PARMA and also contributes to the Artemis SMECY project. Currently, still in FP7, he is project coordinator of the project HARPA on run-time management t

o achieve dependable performance and Workpackage leader of the CONTREX project on design of systems with mixed criticalities. He is also project reviewer for the European Commission and national research bodies in Europe. During the last 20 years he has worked as consultant for both management and technical issues for many ICT industries, gaining a relevant experience in technology transfer and product development. His current research interests include embedded systems design methodologies, real-time operating systems, energy-aware design of sw and hw, runtime management of resources, reconfigurable computing and wireless sensor networks, design and optimization of multi-core systems, NoC design and optimization, reliability.



 

Dimitrios Soudris received his Diploma in Electrical Engineering from the University of Patras, Greece, in 1987. He received the Ph.D. Degree in Electrical Engineering, from the University of Patras in 1992. He was working as a Professor in Dept. of Electrical and Computer Engineering, Democritus University of Thrace for thirteen years since 1995. He is currently working as Associate Professor in School of Electrical and Computer Engineering, Dept. Computer Science of National Technical University of Athens, Greece. His research interests include embedded systems design, reconfigurable architectures, reliability and low power VLSI design. He has published more than 340 papers in international journals and conferences. Also, he is coauthor/coeditor in seven books of Kluwer and Springer. He is leader and principal investigator in numerous research projects funded from the Greek Government and Industry, European Commission (ESPRIT II-III-IVand 5th & 7th IST), ENIAC-JU and European Space Agency. He has served as General Chair and Program Chair for PATMOS 99 and 2000, respectively, General Chair of IFIP-VLSI-SOC 2008 and General Co-Chair of PARMA Workshop 2013. Also, he received an award from INTEL and IBM for the EU project LPGD 25256, awards in ASP-DAC 05 and VLSI 05 for EU AMDREL project IST-2001-34379.