Introduction |
|
1 | (310) |
|
1 Background on Differential Geometry |
|
|
13 | (48) |
|
1.1 Fibre Bundles and Connections |
|
|
13 | (18) |
|
|
31 | (6) |
|
|
37 | (4) |
|
|
41 | (3) |
|
1.5 Characteristic Classes |
|
|
44 | (5) |
|
1.6 The Euler and Thom Classes |
|
|
49 | (12) |
|
2 Asymptotic Expansion of the Heat Kernel |
|
|
61 | (38) |
|
2.1 Differential Operators |
|
|
62 | (7) |
|
2.2 The Heat Kernel on Euclidean Space |
|
|
69 | (2) |
|
|
71 | (3) |
|
2.4 Construction of the Heat Kernel |
|
|
74 | (5) |
|
|
79 | (6) |
|
2.6 The Trace of the Heat Kernel |
|
|
85 | (10) |
|
2.7 Heat Kernels Depending on a Parameter |
|
|
95 | (4) |
|
3 Clifford Modules and Dirac Operators |
|
|
99 | (40) |
|
|
100 | (6) |
|
|
106 | (4) |
|
|
110 | (8) |
|
3.4 Index of Dirac Operators |
|
|
118 | (4) |
|
3.5 The Lichnerowicz Formula |
|
|
122 | (1) |
|
3.6 Some Examples of Clifford Modules |
|
|
123 | (16) |
|
4 Index Density of Dirac Operators |
|
|
139 | (24) |
|
4.1 The Local Index Theorem |
|
|
139 | (10) |
|
|
149 | (4) |
|
4.3 Calculation of the Index Density |
|
|
153 | (10) |
|
5 The Exponential Map and the Index Density |
|
|
163 | (18) |
|
5.1 Jacobian of the Exponential Map on Principal Bundles |
|
|
164 | (4) |
|
5.2 The Heat Kernel of a Principal Bundle |
|
|
168 | (5) |
|
5.3 Calculus with Grassmann and Clifford Variables |
|
|
173 | (4) |
|
5.4 The Index of Dirac Operators |
|
|
177 | (4) |
|
6 The Equivariant Index Theorem |
|
|
181 | (22) |
|
6.1 The Equivariant Index of Dirac Operators |
|
|
182 | (1) |
|
6.2 The Atiyah-Bott Fixed Point Formula |
|
|
183 | (4) |
|
6.3 Asymptotic Expansion of the Equivariant Heat Kernel |
|
|
187 | (3) |
|
6.4 The Local Equivariant Index Theorem |
|
|
190 | (4) |
|
6.5 Geodesic Distance on a Principal Bundle |
|
|
194 | (2) |
|
6.6 The heat kernel of an equivariant vector bundle |
|
|
196 | (3) |
|
6.7 Proof of Proposition 6.13 |
|
|
199 | (4) |
|
7 Equivariant Differential Forms |
|
|
203 | (40) |
|
7.1 Equivariant Characteristic Classes |
|
|
204 | (7) |
|
7.2 The Localization Formula |
|
|
211 | (8) |
|
7.3 Bott's Formulas for Characteristic Numbers |
|
|
219 | (2) |
|
7.4 Exact Stationary Phase Approximation |
|
|
221 | (2) |
|
7.5 The Fourier Transform of Coadjoint Orbits |
|
|
223 | (6) |
|
7.6 Equivariant Cohomology and Families |
|
|
229 | (7) |
|
|
236 | (7) |
|
8 The Kirillov Formula for the Equivariant Index |
|
|
243 | (20) |
|
|
244 | (4) |
|
8.2 The Weyl and Kirillov Character Formulas |
|
|
248 | (4) |
|
8.3 The Heat Kernel Proof of the Kirillov Formula |
|
|
252 | (11) |
|
|
263 | (48) |
|
9.1 The Index Bundle in Finite Dimensions |
|
|
265 | (8) |
|
9.2 The Index Bundle of a Family of Dirac Operators |
|
|
273 | (3) |
|
9.3 The Chern Character of the Index Bundle |
|
|
276 | (11) |
|
9.4 The Equivariant Index and the Index Bundle |
|
|
287 | (2) |
|
9.5 The Case of Varying Dimension |
|
|
289 | (4) |
|
9.6 The Zeta-Function of a Laplacian |
|
|
293 | (5) |
|
9.7 The Determinant Line Bundle |
|
|
298 | (13) |
10 The Family Index Theorem |
|
311 | (38) |
|
10.1 Riemannian Fibre Bundles |
|
|
314 | (5) |
|
10.2 Clifford Modules on Fibre Bundles |
|
|
319 | (7) |
|
10.3 The Bismut Superconnection |
|
|
326 | (4) |
|
10.4 The Family Index Density |
|
|
330 | (8) |
|
10.5 The Transgression Formula |
|
|
338 | (3) |
|
10.6 The Curvature of the Determinant Line Bundle |
|
|
341 | (3) |
|
10.7 The Kirillov Formula and Bismut's Index Theorem |
|
|
344 | (5) |
References |
|
349 | (6) |
List of Notation |
|
355 | (4) |
Index |
|
359 | |