Muutke küpsiste eelistusi

E-raamat: Heat Kernels and Dirac Operators

  • Formaat: PDF+DRM
  • Sari: Grundlehren Text Editions
  • Ilmumisaeg: 09-May-2024
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642580888
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Grundlehren Text Editions
  • Ilmumisaeg: 09-May-2024
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642580888
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The first edition of this book presented simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut), using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive softcover. The first four chapters could be used as the text for a graduate course on the applications of linear elliptic operators in differential geometry and the only prerequisites are a familiarity with basic differential geometry. The next four chapters discuss the equivariant index theorem, and include a useful introduction to equivariant differential forms. The last two chapters give a proof, in the spirit of the book, of Bismut's Local Family Index Theorem for Dirac operators.

This compact soft-cover edition presents simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations. The book discusses the applications of linear elliptic operators in differential geometry, the equivariant index theorem, and provides a proof of Bismut's Local Family Index Theorem for Dirac operators.

Arvustused

Aus den Rezensionen: "... Das vorliegende Buch ist die zweite korrigierte und erweiterte Ausgabe eines Werkes aus dem Jahre 1992. ... Ausgehend von einer Grundausbildung in klassischer Differentialgeometrie stellt das Buch alle zum Verstandnis des Beweises notwendigen Voraussetzungen zur Verfugung. Dadurch eignet es sich einerseits zum Selbststudium fur Studierende mit entsprechender Vorbildung ... andererseits als Grundlage einer Vorlesung uber dieses ergiebige Thema." (P. Grabner, in: IMN - Internationale Mathematische Nachrichten, 2006, Issue 202, S. 45)

Muu info

Springer Book Archives
Introduction 1(310)
1 Background on Differential Geometry
13(48)
1.1 Fibre Bundles and Connections
13(18)
1.2 Riemannian Manifolds
31(6)
1.3 Superspaces
37(4)
1.4 Superconnections
41(3)
1.5 Characteristic Classes
44(5)
1.6 The Euler and Thom Classes
49(12)
2 Asymptotic Expansion of the Heat Kernel
61(38)
2.1 Differential Operators
62(7)
2.2 The Heat Kernel on Euclidean Space
69(2)
2.3 Heat Kernels
71(3)
2.4 Construction of the Heat Kernel
74(5)
2.5 The Formal Solution
79(6)
2.6 The Trace of the Heat Kernel
85(10)
2.7 Heat Kernels Depending on a Parameter
95(4)
3 Clifford Modules and Dirac Operators
99(40)
3.1 The Clifford Algebra
100(6)
3.2 Spinors
106(4)
3.3 Dirac Operators
110(8)
3.4 Index of Dirac Operators
118(4)
3.5 The Lichnerowicz Formula
122(1)
3.6 Some Examples of Clifford Modules
123(16)
4 Index Density of Dirac Operators
139(24)
4.1 The Local Index Theorem
139(10)
4.2 Mehler's Formula
149(4)
4.3 Calculation of the Index Density
153(10)
5 The Exponential Map and the Index Density
163(18)
5.1 Jacobian of the Exponential Map on Principal Bundles
164(4)
5.2 The Heat Kernel of a Principal Bundle
168(5)
5.3 Calculus with Grassmann and Clifford Variables
173(4)
5.4 The Index of Dirac Operators
177(4)
6 The Equivariant Index Theorem
181(22)
6.1 The Equivariant Index of Dirac Operators
182(1)
6.2 The Atiyah-Bott Fixed Point Formula
183(4)
6.3 Asymptotic Expansion of the Equivariant Heat Kernel
187(3)
6.4 The Local Equivariant Index Theorem
190(4)
6.5 Geodesic Distance on a Principal Bundle
194(2)
6.6 The heat kernel of an equivariant vector bundle
196(3)
6.7 Proof of Proposition 6.13
199(4)
7 Equivariant Differential Forms
203(40)
7.1 Equivariant Characteristic Classes
204(7)
7.2 The Localization Formula
211(8)
7.3 Bott's Formulas for Characteristic Numbers
219(2)
7.4 Exact Stationary Phase Approximation
221(2)
7.5 The Fourier Transform of Coadjoint Orbits
223(6)
7.6 Equivariant Cohomology and Families
229(7)
7.7 The Bott Class
236(7)
8 The Kirillov Formula for the Equivariant Index
243(20)
8.1 The Kirillov Formula
244(4)
8.2 The Weyl and Kirillov Character Formulas
248(4)
8.3 The Heat Kernel Proof of the Kirillov Formula
252(11)
9 The Index Bundle
263(48)
9.1 The Index Bundle in Finite Dimensions
265(8)
9.2 The Index Bundle of a Family of Dirac Operators
273(3)
9.3 The Chern Character of the Index Bundle
276(11)
9.4 The Equivariant Index and the Index Bundle
287(2)
9.5 The Case of Varying Dimension
289(4)
9.6 The Zeta-Function of a Laplacian
293(5)
9.7 The Determinant Line Bundle
298(13)
10 The Family Index Theorem 311(38)
10.1 Riemannian Fibre Bundles
314(5)
10.2 Clifford Modules on Fibre Bundles
319(7)
10.3 The Bismut Superconnection
326(4)
10.4 The Family Index Density
330(8)
10.5 The Transgression Formula
338(3)
10.6 The Curvature of the Determinant Line Bundle
341(3)
10.7 The Kirillov Formula and Bismut's Index Theorem
344(5)
References 349(6)
List of Notation 355(4)
Index 359