Muutke küpsiste eelistusi

E-raamat: Heaving, Stretching and Spicing Modes: Climate Variability in the Ocean

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Aug-2020
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811529412
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 147,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Aug-2020
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811529412
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is focused on fundamental aspects of climate variability in the ocean, in particular changes of the wind-driven circulation. The vertical movement of isopycnal (isothermal) layers, including their stretching and compression, is called heaving and stretching. A major part of climate variability in the ocean is heaving in nature. Heave is primarily associated with the adiabatic motions of isopycnal layers due to change of wind stress. It is rather difficult to separate the contributions from adiabatic and diabatic processes.

Isopycnal analysis has been widely used in climate study; however, it is much more accurate to study the isopycnal layers. Here climate signals are examined in terms of changes of layer depth, layer thickness, layer temperature/salinity, spicity and others.



In addition to the traditional Theta-S diagram, the sigma-pi (potential density potential spicity) diagram can also be used in analyzing water mass property distribution and climatevariability. In fact, a radius of signal can be defined rigorously for signals in the sigma-pi diagram; the combination of isopycnal analysis and evaluation of radius of signal provides a powerful tool in analyzing climate variability in the world oceans.
1 Basic Concepts
1(16)
1.1 Roles of Wind in Climate Variability
1(1)
1.2 Main Thermocline in the World Oceans
2(4)
1.3 Reduced Gravity Model, Advantage and Limitation
6(6)
1.3.1 Model Formulation
6(5)
1.3.2 The Reduced Gravity in the World Oceans
11(1)
1.4 Layer Outcropping: The Physics and the Numerical Method
12(5)
References
16(1)
2 Climate Variability Diagnosed from the Spherical Coordinates
17(44)
2.1 Climate Variability Diagnosed in the z-Coordinate
17(11)
2.2 External/Internal Modes in Meridional/Zonal Directions
28(11)
2.2.1 Heat Content Anomaly
28(5)
2.2.2 Salinity Anomaly
33(2)
2.2.3 Density Anomaly
35(4)
2.3 Adiabatic Signals in the Upper Ocean
39(7)
2.3.1 Adiabatic Adjustment in the Upper Ocean
41(2)
2.3.2 Adiabatic Wave Adjustment in the Meridional Direction
43(3)
2.4 The Regulation of MOC (MHF) by Wind Stress and Buoyancy Anomalies
46(7)
2.4.1 Introduction
46(1)
2.4.2 Surface Density Anomaly
46(2)
2.4.3 Correlation Between Surface Forces and MOC
48(4)
2.4.4 Conclusion
52(1)
2.5 Adiabatic Heaving Signals in the Deep Ocean
53(4)
2.6 Final Remarks
57(4)
References
59(2)
3 Heaving, Stretching, Spicing and Isopycnal Analysis
61(100)
3.1 Heaving, Stretching and Spicing Modes
61(12)
3.1.1 Adiabatic and Isentropic Processes
61(1)
3.1.2 Heaving, Stretching and Spicing Modes
62(2)
3.1.3 External Heaving Modes Versus Internal Heaving Modes
64(4)
3.1.4 Wave Processes Related to Adiabatic Internal Heaving Modes
68(2)
3.1.5 Local Versus Global Heaving Modes
70(3)
3.2 Potential Spicity
73(11)
3.2.1 Introduction
73(1)
3.2.2 Define Potential Spicity by Line Integration
74(2)
3.2.3 Define Potential Spicity in the Least Square Sense
76(2)
3.2.4 Solve the Linearized Least Square Problem
78(1)
3.2.5 Potential Spicity Functions Based on UNESCO EOS-80
79(4)
3.2.6 Potential Spicity Functions Based on UNESCO TEOS_10
83(1)
3.3 G-n Diagram and Its Application
84(53)
3.3.1 The Meaning of Spicity
84(10)
3.3.2 Density Ratio Inferred from the Density-Spicity Diagram
94(16)
3.3.3 The σ--π Plane as a Metric Space
110(27)
3.4 Isopycnal Analysis
137(24)
3.4.1 The Lagrangian Coordinate
138(9)
3.4.2 Isopycnal Analysis in the Eulerian Coordinate
147(5)
3.4.3 Isothermal Analysis
152(7)
References
159(2)
4 Heaving Modes in the World Oceans
161(102)
4.1 Heaving Induced by Wind Stress Anomaly
161(34)
4.1.1 Introduction
161(4)
4.1.2 A Two-Hemisphere Model Ocean
165(10)
4.1.3 A Southern Hemisphere Model Ocean
175(9)
4.1.4 Adiabatic MOCs of the World Oceans with Rectangular Basins
184(6)
4.1.5 MOC/MHF Simulated by a RGM in the World Oceans
190(5)
4.2 Heaving Induced by Anomalous Freshwater Forcing
195(14)
4.2.1 Introduction
195(3)
4.2.2 Model Set Up
198(1)
4.2.3 Results from Numerical Experiments
198(10)
4.2.4 Experiment for 40 Year Continuing Freshening of the Ocean
208(1)
4.3 Heaving Induced by Anomalous Wind, Freshening and Warming
209(7)
4.3.1 Introduction
209(1)
4.3.2 A Simple Generalized Reduced Gravity Model
209(1)
4.3.3 Numerical Experiments Based on This Reduced Gravity Model
210(6)
4.4 Heaving Induced by Convection Generated Reduced Gravity Anomaly
216(14)
4.4.1 Introduction
216(2)
4.4.2 Model Set Up
218(1)
4.4.3 Results from Numerical Experiments
219(11)
4.4.4 Numerical Experiments with Sinusoidal Reduced Gravity Perturbations
230(1)
4.5 Heaving Induced by Deep Convection Generated Volume Loss
230(11)
4.5.1 Introduction
230(4)
4.5.2 Model Formulation
234(1)
4.5.3 Results of Numerical Experiments
234(7)
4.6 ENSO Events and Heaving Modes
241(22)
4.6.1 Introduction
241(1)
4.6.2 Variability of Heat Content and Horizontal Heat Fluxes Due to ENSO Diagnosed from the GODAS Data
242(3)
4.6.3 Meridional Heat Flux
245(3)
4.6.4 Zonal Heat Flux
248(3)
4.6.5 Vertical Heat Flux
251(6)
4.6.6 A Two-Hemisphere Model Ocean Simulating ENSO
257(4)
References
261(2)
5 Heaving Signals in the Isopycnal Coordinate
263(72)
5.1 Introduction
263(2)
5.2 Casting Method
265(7)
5.2.1 FDC
265(1)
5.2.2 MDC
266(1)
5.2.3 Separating the Signals Into External and Internal Modes
267(2)
5.2.4 Statistics in the Density Space
269(1)
5.2.5 External Signals in Terms of Layer Thickness
270(2)
5.3 Projecting Method
272(2)
5.4 Difference Between the Casting Method and the Projecting Method
274(2)
5.5 Isopycnal Layer Analysis for the World Oceans
276(32)
5.5.1 External Modes
276(4)
5.5.2 Heaving Modes for σ1 = 30.9 ± 0.05 kg/m3
280(3)
5.5.3 Horizontal Distribution of Climate Variability for σ1 = 30.9 ± 0.05 kg/m3
283(2)
5.5.4 The Heaving Ratio
285(3)
5.5.5 Regional Anomaly Patterns
288(3)
5.5.6 A Meridional Section Through 60.5° W
291(9)
5.5.7 A Zonal Section Along the Equator
300(5)
5.5.8 A Zonal Section Along 45.17° N
305(3)
5.6 Isopycnal Layer Analysis Based on σ0
308(4)
5.7 Heaving Signals for the Shallow Water in the Pacific-Indian Basin
312(18)
5.7.1 Application of the Casting Method to the GODAS Data
313(7)
5.7.2 Isopycnal Layer Analysis of the Equatorial Dynamics Based on Projecting Methods
320(10)
5.8 Heaving Signal Propagation Through the Equatorial
330(5)
Appendix: Connection Between the MDC and the FDC
331(1)
References
332(3)
6 Heaving Signals in the Isothermal Coordinate
335(38)
6.1 Introduction
335(1)
6.2 Casting Method
335(3)
6.2.1 FTC
336(2)
6.3 Casting Method Applied to the GODAS Data
338(7)
6.3.1 The Choice of Temperature Scale
338(1)
6.3.2 Statistics in the Temperature Space
339(6)
6.4 Projecting Method
345(13)
6.4.1 Isothermal Layer Analysis for the Layer of θ = 20 ± 0.5°C
347(5)
6.4.2 Structure in the Pacific Basin
352(6)
6.5 Signals of Layer Depth and Zonal Velocity in the Pacific Basin
358(1)
6.6 Z-Theta Diagram and Its Application to Climate Variability Analysis
359(14)
Appendix: Connection Between the MTC and the FTC
369(2)
References
371(2)
7 Climate Signals in the Isohaline Coordinate
373(14)
7.1 Introduction
373(1)
7.2 Casting Method
374(2)
7.2.1 FSC
375(1)
7.2.2 MSC
376(1)
7.3 Separating the Signals into External and Internal Modes
376(1)
7.3.1 FSC
377(1)
7.3.2 MSC
377(1)
7.4 Analysis Based on the GODAS Data
377(2)
7.5 Shallow Salty Water Sphere in the Atlantic Ocean
379(8)
References
386(1)
Index 387
Rui Xin Huang is Scientist Emeritus of the Woods Hole Oceanographic Institution. He has been engaged in oceanic and climatic research for more than 3 decades. His research interests are theoretical and numerical studies of the wind-driven and thermohaline circulation in the oceans, dynamics of western boundary currents, flow over topography, climate and paleoclimate dynamics.