Muutke küpsiste eelistusi

E-raamat: Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions

(Peking Univ, China)
  • Formaat: 316 pages
  • Ilmumisaeg: 13-Mar-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813209497
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 114,66 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 316 pages
  • Ilmumisaeg: 13-Mar-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813209497
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}_{216}$. It provides another beautiful example on the fundamental unity of mathematics.
Part I Geometry and arithmetic associated with Appell hypergeometric functions
1 Introduction
1(31)
2 Four derivatives and their properties
32(21)
3 Nonlinear partial differential equations and modular functions associated to U(2, 1)
53(19)
4 η-functions associated to U(2, 1) and Picard curves
72(14)
5 Transform problems and modular equations associated to algebraic surfaces
86(9)
6 Triangular s-functions associated to U(2, 1) and Picard curves
95(13)
7 Four derivatives and nonlinear evolution equations
108(9)
References for Part I
112(5)
Part II Hessian polyhedra, invariant theory and Appell hypergeometric functions
1 Introduction
117(32)
2 The reciprocity law about the Appell hypergeometric functions
149(6)
3 The algebraic solutions of Appell hypergeometric partial differential equations
155(5)
4 The Hessian polyhedral equations
160(28)
5 Invariant theory for the system of algebraic equations
188(13)
6 Ternary cubic forms associated to Hessian polyhedra
201(10)
7 Some rational invariants on CP2
211(14)
References for Part II
219(6)
Part III Galois representations arising from twenty-seven lines on a cubic surface and the arithmetic associated with Hessian polyhedra
1 Introduction
225(14)
2 Hessian polyhedra and cubic forms associated to G25,920
239(8)
3 Hessian polyhedra and Picard modular forms
247(27)
4 Hessian polyhedra and Galois representations associated with cubic surfaces
274(17)
5 Hessian polyhedra and the arithmetic of rigid Calabi-Yau threefolds
291
References for Part III
304