Muutke küpsiste eelistusi

E-raamat: Hidden Markov Processes: Theory and Applications to Biology

  • Formaat - EPUB+DRM
  • Hind: 66,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics.

The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.

Arvustused

"This book will serve as a solid and invaluable reference."--Byung-Jun Yoon, Quarterly Review of Biology

Preface xi
PART 1 PRELIMINARIES
1(98)
Chapter 1 Introduction to Probability and Random Variables
3(42)
1.1 Introduction to Random Variables
3(14)
1.1.1 Motivation
3(1)
1.1.2 Definition of a Random Variable and Probability
4(4)
1.1.3 Function of a Random Variable, Expected Value
8(4)
1.1.4 Total Variation Distance
12(5)
1.2 Multiple Random Variables
17(15)
1.2.1 Joint and Marginal Distributions
17(1)
1.2.2 Independence and Conditional Distributions
18(9)
1.2.3 Bayes' Rule
27(2)
1.2.4 MAP and Maximum Likelihood Estimates
29(3)
1.3 Random Variables Assuming Infinitely Many Values
32(13)
1.3.1 Some Preliminaries
32(3)
1.3.2 Markov and Chebycheff Inequalities
35(3)
1.3.3 Hoeffding's Inequality
38(3)
1.3.4 Monte Carlo Simulation
41(2)
1.3.5 Introduction to Cramer's Theorem
43(2)
Chapter 2 Introduction to Information Theory
45(26)
2.1 Convex and Concave Functions
45(7)
2.2 Entropy
52(9)
2.2.1 Definition of Entropy
52(1)
2.2.2 Properties of the Entropy Function
53(1)
2.2.3 Conditional Entropy
54(4)
2.2.4 Uniqueness of the Entropy Function
58(3)
2.3 Relative Entropy and the Kullback-Leibler Divergence
61(10)
Chapter 3 Nonnegative Matrices
71(28)
3.1 Canonical Form for Nonnegative Matrices
71(18)
3.1.1 Basic Version of the Canonical Form
71(5)
3.1.2 Irreducible Matrices
76(2)
3.1.3 Final Version of Canonical Form
78(2)
3.1.4 Irreducibility, Aperiodicity, and Primitivity
80(6)
3.1.5 Canonical Form for Periodic Irreducible Matrices
86(3)
3.2 Perron-Frobenius Theory
89(10)
3.2.1 Perron-Frobenius Theorem for Primitive Matrices
90(5)
3.2.2 Perron-Frobenius Theorem for Irreducible Matrices
95(4)
PART 2 HIDDEN MARKOV PROCESSES
99(124)
Chapter 4 Markov Processes
101(28)
4.1 Basic Definitions
101(10)
4.1.1 The Markov Property and the State Transition Matrix
101(6)
4.1.2 Estimating the State Transition Matrix
107(4)
4.2 Dynamics of Stationary Markov Chains
111(11)
4.2.1 Recurrent and Transient States
111(3)
4.2.2 Hitting Probabilities and Mean Hitting Times
114(8)
4.3 Ergodicity of Markov Chains
122(7)
Chapter 5 Introduction to Large Deviation Theory
129(35)
5.1 Problem Formulation
129(5)
5.2 Large Deviation Property for I.I.D. Samples: Sanov's Theorem
134(6)
5.3 Large Deviation Property for Markov Chains
140(24)
5.3.1 Stationary Distributions
141(2)
5.3.2 Entropy and Relative Entropy Rates
143(5)
5.3.3 The Rate Function for Doubleton Frequencies
148(10)
5.3.4 The Rate Function for Singleton Frequencies
158(6)
Chapter 6 Hidden Markov Processes: Basic Properties
164(13)
6.1 Equivalence of Various Hidden Markov Models
164(5)
6.1.1 Three Different-Looking Models
164(2)
6.1.2 Equivalence between the Three Models
166(3)
6.2 Computation of Likelihoods
169(8)
6.2.1 Computation of Likelihoods of Output Sequences
170(2)
6.2.2 The Viterbi Algorithm
172(2)
6.2.3 The Baum-Welch Algorithm
174(3)
Chapter 7 Hidden Markov Processes: The Complete Realization Problem
177(46)
7.1 Finite Hankel Rank: A Universal Necessary Condition
178(2)
7.2 Nonsufficiency of the Finite Hankel Rank Condition
180(10)
7.3 An Abstract Necessary and Sufficient Condition
190(5)
7.4 Existence of Regular Quasi-Realizations
195(10)
7.5 Spectral Properties of Alpha-Mixing Processes
205(2)
7.6 Ultra-Mixing Processes
207(4)
7.7 A Sufficient Condition for the Existence of HMMs
211(12)
PART 3 APPLICATIONS TO BIOLOGY
223(50)
Chapter 8 Some Applications to Computational Biology
225(30)
8.1 Some Basic Biology
226(9)
8.1.1 The Genome
226(6)
8.1.2 The Genetic Code
232(3)
8.2 Optimal Gapped Sequence Alignment
235(5)
8.2.1 Problem Formulation
236(1)
8.2.2 Solution via Dynamic Programming
237(3)
8.3 Gene Finding
240(7)
8.3.1 Genes and the Gene-Finding Problem
240(3)
8.3.2 The GLIMMER Family of Algorithms
243(3)
8.3.3 The GENSCAN Algorithm
246(1)
8.4 Protein Classification
247(8)
8.4.1 Proteins and the Protein Classification Problem
247(2)
8.4.2 Protein Classification Using Profile Hidden Markov Models
249(6)
Chapter 9 BLAST Theory
255(18)
9.1 BLAST Theory: Statements of Main Results
255(9)
9.1.1 Problem Formulations
255(2)
9.1.2 The Moment Generating Function
257(2)
9.1.3 Statement of Main Results
259(4)
9.1.4 Application of Main Results
263(1)
9.2 BLAST Theory: Proofs of Main Results
264(9)
Bibliography 273(12)
Index 285
M. Vidyasagar is the Cecil and Ida Green Chair in Systems Biology Science at the University of Texas, Dallas. His many books include Computational Cancer Biology: An Interaction Network Approach and Control System Synthesis: A Factorization Approach.