Preface to the Second Edition |
|
xvii | |
Preface to the First Edition |
|
xix | |
1 Overview of spatial data problems |
|
1 | (22) |
|
1.1 Introduction to spatial data and models |
|
|
1 | (7) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.1.3 Point process models |
|
|
6 | (1) |
|
1.1.4 Software and datasets |
|
|
7 | (1) |
|
1.2 Fundamentals of cartography |
|
|
8 | (8) |
|
|
8 | (5) |
|
1.2.2 Calculating distances on the earth's surface |
|
|
13 | (3) |
|
1.3 Maps and geodesics in R |
|
|
16 | (3) |
|
|
19 | (4) |
2 Basics of point-referenced data models |
|
23 | (30) |
|
2.1 Elements of point-referenced modeling |
|
|
23 | (8) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (5) |
|
2.1.4 Variogram model fitting |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.2.1 Geometric anisotropy |
|
|
31 | (1) |
|
2.2.2 Other notions of anisotropy |
|
|
32 | (1) |
|
2.3 Exploratory approaches for point-referenced data |
|
|
32 | (8) |
|
|
32 | (5) |
|
2.3.2 Assessing anisotropy |
|
|
37 | (7) |
|
2.3.2.1 Directional semivariograms and rose diagrams |
|
|
37 | (1) |
|
2.3.2.2 Empirical semivariogram contour (ESC) plots |
|
|
38 | (2) |
|
2.4 Classical spatial prediction |
|
|
40 | (4) |
|
2.4.0.3 Noiseless kriging |
|
|
43 | (1) |
|
|
44 | (6) |
|
2.5.1 EDA and spatial data visualization in R |
|
|
44 | (3) |
|
2.5.2 Variogram analysis in R |
|
|
47 | (3) |
|
|
50 | (3) |
3 Some theory for point-referenced data models |
|
53 | (20) |
|
3.1 Formal modeling theory for spatial processes |
|
|
53 | (10) |
|
3.1.1 Some basic stochastic process theory for spatial processes |
|
|
55 | (2) |
|
3.1.2 Covariance functions and spectra |
|
|
57 | (3) |
|
3.1.2.1 More general isotropic correlation functions |
|
|
60 | (1) |
|
3.1.3 Constructing valid covariance functions |
|
|
60 | (1) |
|
3.1.4 Smoothness of process realizations |
|
|
61 | (2) |
|
3.1.5 Directional derivative processes |
|
|
63 | (1) |
|
3.2 Nonstationary spatial process models * |
|
|
63 | (7) |
|
|
64 | (1) |
|
3.2.2 Nonstationarity through kernel mixing of process variables |
|
|
65 | (4) |
|
3.2.3 Mixing of process distributions |
|
|
69 | (1) |
|
|
70 | (3) |
4 Basics of areal data models |
|
73 | (24) |
|
4.1 Exploratory approaches for areal data |
|
|
74 | (4) |
|
4.1.1 Measures of spatial association |
|
|
75 | (2) |
|
|
77 | (1) |
|
4.2 Brook's Lemma and Markov random fields |
|
|
78 | (2) |
|
4.3 Conditionally autoregressive (CAR) models |
|
|
80 | (5) |
|
|
81 | (3) |
|
4.3.2 The non-Gaussian case |
|
|
84 | (1) |
|
4.4 Simultaneous autoregressive (SAR) models |
|
|
85 | (3) |
|
4.4.1 CAR versus SAR models |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (7) |
|
4.5.1 Adjacency matrices from maps using spdep |
|
|
89 | (1) |
|
4.5.2 Moran's I and Geary's C in spdep |
|
|
90 | (1) |
|
4.5.3 SAR and CAR model fitting using spdep in R |
|
|
90 | (5) |
|
|
95 | (2) |
5 Basics of Bayesian inference |
|
97 | (26) |
|
5.1 Introduction to hierarchical modeling and Bayes' Theorem |
|
|
97 | (3) |
|
5.1.1 Illustrations of Bayes' Theorem |
|
|
98 | (2) |
|
|
100 | (7) |
|
|
100 | (1) |
|
5.2.2 Interval estimation |
|
|
101 | (1) |
|
5.2.3 Hypothesis testing and model choice |
|
|
101 | (6) |
|
|
102 | (1) |
|
5.2.3.2 The DIC criterion |
|
|
103 | (2) |
|
5.2.3.3 Posterior predictive loss criterion |
|
|
105 | (1) |
|
5.2.3.4 Model assessment using hold out data |
|
|
106 | (1) |
|
|
107 | (8) |
|
|
108 | (1) |
|
5.3.2 The Metropolis-Hastings algorithm |
|
|
109 | (2) |
|
|
111 | (1) |
|
5.3.4 Convergence diagnosis |
|
|
112 | (1) |
|
5.3.5 Variance estimation |
|
|
113 | (2) |
|
|
115 | (3) |
|
5.4.1 Basic Bayesian modeling in R |
|
|
115 | (1) |
|
5.4.2 Advanced Bayesian modeling in WinBUGS |
|
|
116 | (2) |
|
|
118 | (5) |
6 Hierarchical modeling for univariate spatial data |
|
123 | (42) |
|
6.1 Stationary spatial process models |
|
|
123 | (13) |
|
|
124 | (3) |
|
6.1.1.1 Prior specification |
|
|
124 | (3) |
|
6.1.2 Bayesian kriging in WinBUGS |
|
|
127 | (2) |
|
6.1.3 More general isotropic correlation functions, revisited |
|
|
129 | (4) |
|
6.1.4 Modeling geometric anisotropy |
|
|
133 | (3) |
|
6.2 Generalized linear spatial process modeling |
|
|
136 | (3) |
|
6.3 Fitting hierarchical models for point-referenced data in spBayes |
|
|
139 | (11) |
|
6.3.1 Gaussian spatial regression models |
|
|
139 | (7) |
|
|
143 | (2) |
|
|
145 | (1) |
|
6.3.2 Non-Gaussian spatial GLM |
|
|
146 | (4) |
|
|
150 | (10) |
|
|
150 | (1) |
|
6.4.2 Traditional models and frequentist methods |
|
|
151 | (1) |
|
6.4.3 Hierarchical Bayesian methods |
|
|
152 | (7) |
|
6.4.3.1 Poisson-gamma model |
|
|
152 | (1) |
|
6.4.3.2 Poisson-lognormal models |
|
|
153 | (2) |
|
6.4.3.3 CAR models and their difficulties |
|
|
155 | (4) |
|
6.4.4 Extending the CAR model |
|
|
159 | (1) |
|
6.5 General linear areal data modeling |
|
|
160 | (1) |
|
6.6 Comparison of point-referenced and areal data models |
|
|
160 | (1) |
|
|
161 | (4) |
7 Spatial misalignment |
|
165 | (34) |
|
|
166 | (7) |
|
7.1.1 Gaussian process models |
|
|
166 | (2) |
|
7.1.1.1 Motivating data set |
|
|
166 | (1) |
|
7.1.1.2 Model assumptions and analytic goals |
|
|
167 | (1) |
|
7.1.2 Methodology for the point-level realignment |
|
|
168 | (5) |
|
7.2 Nested block-level modeling |
|
|
173 | (6) |
|
7.2.1 Methodology for nested block-level realignment |
|
|
173 | (4) |
|
7.2.2 Individual block group estimation |
|
|
177 | (2) |
|
7.2.3 Aggregate estimation: Block groups near the Ithaca, NY, waste site |
|
|
179 | (1) |
|
7.3 Nonnested block-level modeling |
|
|
179 | (10) |
|
7.3.1 Motivating data set |
|
|
180 | (2) |
|
7.3.2 Methodology for nonnested block-level realignment |
|
|
182 | (21) |
|
7.3.2.1 Total population interpolation model |
|
|
186 | (2) |
|
7.3.2.2 Age and sex effects |
|
|
188 | (1) |
|
7.4 A data assimilation example |
|
|
189 | (1) |
|
7.5 Misaligned regression modeling |
|
|
190 | (5) |
|
|
195 | (4) |
8 Modeling and Analysis for Point Patterns |
|
199 | (58) |
|
|
199 | (4) |
|
8.2 Theoretical development |
|
|
203 | (4) |
|
|
204 | (1) |
|
|
205 | (2) |
|
|
207 | (6) |
|
8.3.1 Exploratory data analysis; investigating complete spatial randomness |
|
|
208 | (1) |
|
|
208 | (2) |
|
|
210 | (3) |
|
8.3.4 Empirical estimates of the intensity |
|
|
213 | (1) |
|
8.4 Modeling point patterns; NHPP's and Cox processes |
|
|
213 | (7) |
|
8.4.1 Parametric specifications |
|
|
215 | (1) |
|
8.4.2 Nonparametric specifications |
|
|
216 | (1) |
|
8.4.3 Bayesian modeling details |
|
|
217 | (1) |
|
8.4.3.1 The "poor man's" version; revisiting the ecological fallacy |
|
|
218 | (1) |
|
|
218 | (2) |
|
8.5 Generating point patterns |
|
|
220 | (1) |
|
8.6 More general point pattern models |
|
|
221 | (7) |
|
|
221 | (2) |
|
8.6.1.1 Neyman-Scott processes |
|
|
222 | (1) |
|
8.6.2 Shot noise processes |
|
|
223 | (1) |
|
|
224 | (1) |
|
8.6.4 Further Bayesian model fitting and inference |
|
|
225 | (1) |
|
8.6.5 Implementing fully Bayesian inference |
|
|
226 | (1) |
|
|
226 | (2) |
|
8.7 Marked point processes |
|
|
228 | (9) |
|
8.7.1 Model specifications |
|
|
228 | (1) |
|
8.7.2 Bayesian model fitting for marked point processes |
|
|
229 | (1) |
|
8.7.3 Modeling clarification |
|
|
230 | (1) |
|
8.7.4 Enriching intensities |
|
|
231 | (6) |
|
8.7.4.1 Introducing non-spatial covariate information |
|
|
233 | (2) |
|
8.7.4.2 Results of the analysis |
|
|
235 | (2) |
|
8.8 Space-time point patterns |
|
|
237 | (5) |
|
8.8.1 Space-time Poisson process models |
|
|
238 | (1) |
|
8.8.2 Dynamic models for discrete time data |
|
|
238 | (1) |
|
8.8.3 Space-time Cox process models using stochastic PDE's |
|
|
239 | (3) |
|
8.8.3.1 Modeling the house construction data for Irving, TX |
|
|
240 | (2) |
|
8.8.3.2 Results of the data analysis |
|
|
242 | (1) |
|
|
242 | (11) |
|
8.9.1 Measurement error in point patterns |
|
|
242 | (4) |
|
|
244 | (2) |
|
8.9.2 Presence-only data application |
|
|
246 | (5) |
|
8.9.2.1 Probability model for presence locations |
|
|
247 | (4) |
|
|
251 | (1) |
|
8.9.4 Preferential sampling |
|
|
252 | (1) |
|
|
253 | (4) |
9 Multivariate spatial modeling for point-referenced data |
|
257 | (48) |
|
9.1 Joint modeling in classical multivariate geostatistics |
|
|
257 | (4) |
|
|
259 | (1) |
|
9.1.2 Intrinsic multivariate correlation and nested models |
|
|
260 | (1) |
|
9.2 Some theory for cross-covariance functions |
|
|
261 | (2) |
|
|
263 | (1) |
|
9.4 Spatial prediction, interpolation, and regression |
|
|
264 | (14) |
|
9.4.1 Regression in the Gaussian case |
|
|
266 | (2) |
|
9.4.2 Avoiding the symmetry of the cross-covariance matrix |
|
|
268 | (1) |
|
9.4.3 Regression in a probit model |
|
|
268 | (1) |
|
|
269 | (3) |
|
9.4.5 Conditional modeling |
|
|
272 | (3) |
|
9.4.6 Spatial regression with kernel averaged predictors |
|
|
275 | (3) |
|
9.5 Coregionalization models |
|
|
278 | (5) |
|
9.5.1 Coregionalization models and their properties |
|
|
278 | (3) |
|
9.5.2 Unconditional and conditional Bayesian specifications |
|
|
281 | (2) |
|
9.5.2.1 Equivalence of likelihoods |
|
|
281 | (1) |
|
9.5.2.2 Equivalence of prior specifications |
|
|
282 | (1) |
|
9.6 Spatially varying coefficient models |
|
|
283 | (10) |
|
9.6.1 Approach for a single covariate |
|
|
285 | (1) |
|
9.6.2 Multivariate spatially varying coefficient models |
|
|
286 | (2) |
|
9.6.3 Spatially varying coregionalization models |
|
|
288 | (1) |
|
9.6.4 Model-fitting issues |
|
|
288 | (5) |
|
9.6.4.1 Fitting the joint model |
|
|
288 | (1) |
|
9.6.4.2 Fitting the conditional model |
|
|
289 | (4) |
|
9.7 Other constructive approaches |
|
|
293 | (4) |
|
9.7.1 Generalized linear model setting |
|
|
296 | (1) |
|
9.8 Illustrating multivariate spatial modeling with spBayes |
|
|
297 | (4) |
|
|
301 | (4) |
10 Models for multivariate areal data |
|
305 | (24) |
|
10.1 The multivariate CAR (MCAR) distribution |
|
|
306 | (2) |
|
10.2 Modeling with a proper, non-separable MCAR distribution |
|
|
308 | (3) |
|
10.3 Conditionally specified Generalized MCAR (GMCAR) distributions |
|
|
311 | (3) |
|
10.4 Modeling using the GMCAR distribution |
|
|
314 | (1) |
|
10.5 Illustration: Fitting conditional GMCAR to Minnesota cancer data |
|
|
315 | (4) |
|
10.6 Coregionalized MCAR distributions |
|
|
319 | (3) |
|
10.6.1 Case 1: Independent and identical latent CAR variables |
|
|
319 | (1) |
|
10.6.2 Case 2: Independent but not identical latent CAR variables |
|
|
320 | (1) |
|
10.6.3 Case 3: Dependent and not identical latent CAR variables |
|
|
321 | (1) |
|
10.7 Modeling with coregionalized MCAR's |
|
|
322 | (2) |
|
10.8 Illustrating coregionalized MCAR models with three cancers from Minnesota |
|
|
324 | (3) |
|
|
327 | (2) |
11 Spatiotemporal modeling |
|
329 | (52) |
|
11.1 General modeling formulation |
|
|
330 | (9) |
|
11.1.1 Preliminary analysis |
|
|
330 | (1) |
|
|
331 | (2) |
|
11.1.3 Associated distributional results |
|
|
333 | (2) |
|
11.1.4 Prediction and forecasting |
|
|
335 | (4) |
|
11.2 Point-level modeling with continuous time |
|
|
339 | (4) |
|
11.3 Nonseparable spatiotemporal models |
|
|
343 | (1) |
|
11.4 Dynamic spatiotemporal models |
|
|
344 | (8) |
|
11.4.1 Brief review of dynamic linear models |
|
|
345 | (1) |
|
11.4.2 Formulation for spatiotemporal models |
|
|
345 | (3) |
|
11.4.3 Spatiotemporal data |
|
|
348 | (4) |
|
11.5 Fitting dynamic spatiotemporal models using spBayes |
|
|
352 | (3) |
|
11.6 Geostatistical space-time modeling driven by differential equations |
|
|
355 | (6) |
|
11.7 Areal unit space-time modeling |
|
|
361 | (12) |
|
|
361 | (4) |
|
11.7.2 Misalignment across years |
|
|
365 | (2) |
|
11.7.3 Nested misalignment both within and across years |
|
|
367 | (3) |
|
11.7.4 Nonnested misalignment and regression |
|
|
370 | (3) |
|
11.8 Areal-level continuous time modeling |
|
|
373 | (5) |
|
11.8.1 Areally referenced temporal processes |
|
|
374 | (2) |
|
11.8.2 Hierarchical modeling |
|
|
376 | (2) |
|
|
378 | (3) |
12 Modeling large spatial and spatiotemporal datasets |
|
381 | (32) |
|
|
381 | (1) |
|
12.2 Appr4mate likelihood approaches |
|
|
381 | (5) |
|
|
381 | (1) |
|
12.2.2 Lattice and conditional independence methods |
|
|
382 | (1) |
|
|
383 | (1) |
|
12.2.4 Approximate likelihood |
|
|
384 | (1) |
|
12.2.5 Variational Bayes algorithm for spatial models |
|
|
384 | (2) |
|
12.2.6 Covariance tapering |
|
|
386 | (1) |
|
12.3 Models for large spatial data: low rank models |
|
|
386 | (4) |
|
12.3.1 Kernel-based dimension reduction |
|
|
387 | (1) |
|
12.3.2 The Karhunen-Loeve representation of Gaussian processes |
|
|
388 | (2) |
|
12.4 Predictive process models |
|
|
390 | (10) |
|
12.4.1 The predictive process |
|
|
390 | (2) |
|
12.4.2 Properties of the predictive process |
|
|
392 | (1) |
|
12.4.3 Biases in low-rank models and the bias-adjusted modified predictive process |
|
|
393 | (2) |
|
12.4.4 Selection of knots |
|
|
395 | (2) |
|
12.4.5 A simulation example using the two step analysis |
|
|
397 | (1) |
|
12.4.6 Non-Gaussian first stage models |
|
|
397 | (1) |
|
12.4.7 Spatiotemporal versions |
|
|
398 | (1) |
|
12.4.8 Multivariate predictive process models |
|
|
399 | (1) |
|
12.5 Modeling with the predictive process |
|
|
400 | (4) |
|
12.6 Fitting a predictive process model in spBayes |
|
|
404 | (7) |
|
|
411 | (2) |
13 Spatial gradients and wombling |
|
413 | (34) |
|
|
413 | (2) |
|
13.2 Process smoothness revisited * |
|
|
415 | (2) |
|
13.3 Directional finite difference and derivative processes |
|
|
417 | (1) |
|
13.4 Distribution theory for finite differences and directional gradients |
|
|
418 | (2) |
|
13.5 Directional derivative processes in modeling |
|
|
420 | (2) |
|
13.6 Illustration: Inference for differences and gradients |
|
|
422 | (2) |
|
13.7 Curvilinear gradients and wombling |
|
|
424 | (3) |
|
13.7.1 Gradients along curves |
|
|
424 | (2) |
|
|
426 | (1) |
|
13.8 Distribution theory for curvilinear gradients |
|
|
427 | (2) |
|
13.9 Illustration: Spatial boundaries for invasive plant species |
|
|
429 | (3) |
|
|
432 | (13) |
|
13.10.1 Review of existing methods |
|
|
433 | (1) |
|
13.10.2 Simple MRF-based areal wombling |
|
|
434 | (4) |
|
13.10.2.1 Adding covariates |
|
|
437 | (1) |
|
13.10.3 Joint site-edge areal wombling |
|
|
438 | (6) |
|
13.10.3.1 Edge smoothing and random neighborhood structure |
|
|
439 | (1) |
|
13.10.3.2 Two-level CAR model |
|
|
439 | (1) |
|
13.10.3.3 Site-edge (SE) models |
|
|
440 | (4) |
|
13.10.4 FDR-based areal wombling |
|
|
444 | (1) |
|
13.11 Wombling with point process data |
|
|
445 | (1) |
|
|
445 | (2) |
14 Spatial survival models |
|
447 | (32) |
|
|
448 | (6) |
|
14.1.1 Univariate spatial frailty modeling |
|
|
448 | (5) |
|
14.1.1.1 Bayesian implementation |
|
|
449 | (4) |
|
14.1.2 Spatial frailty versus logistic regression models |
|
|
453 | (1) |
|
14.2 Semiparametric models |
|
|
454 | (3) |
|
14.2.1 Beta mixture approach |
|
|
455 | (1) |
|
14.2.2 Counting process approach |
|
|
456 | (1) |
|
14.3 Spatiotemporal models |
|
|
457 | (5) |
|
14.3.1 Results for the full model |
|
|
459 | (1) |
|
14.3.2 Bayesian model choice |
|
|
460 | (2) |
|
|
462 | (4) |
|
14.4.1 Static spatial survival data with multiple causes of death |
|
|
462 | (1) |
|
14.4.2 MCAR specification, simplification, and computing |
|
|
462 | (1) |
|
14.4.3 Spatiotemporal survival data |
|
|
463 | (3) |
|
14.5 Spatial cure rate models |
|
|
466 | (9) |
|
14.5.1 Models for right- and interval-censored data |
|
|
468 | (3) |
|
14.5.1.1 Right-censored data |
|
|
468 | (3) |
|
14.5.1.2 Interval-censored data |
|
|
471 | (1) |
|
14.5.2 Spatial frailties in cure rate models |
|
|
471 | (1) |
|
|
472 | (3) |
|
|
475 | (4) |
15 Special topics in spatial process modeling |
|
479 | (22) |
|
|
479 | (7) |
|
15.1.1 Algorithmic and pseudo-statistical approaches in weather prediction |
|
|
479 | (1) |
|
15.1.2 Fusion modeling using stochastic integration |
|
|
480 | (2) |
|
|
482 | (2) |
|
15.1.4 Spatiotemporal versions |
|
|
484 | (1) |
|
|
485 | (1) |
|
15.2 Space-time modeling for extremes |
|
|
486 | (6) |
|
15.2.1 Possibilities for modeling maxima |
|
|
487 | (1) |
|
15.2.2 Review of extreme value theory |
|
|
488 | (1) |
|
15.2.3 A continuous spatial process model |
|
|
489 | (1) |
|
|
490 | (1) |
|
15.2.5 Hierarchical modeling for spatial extreme values |
|
|
491 | (1) |
|
|
492 | (9) |
|
15.3.1 Basic definitions and motivating data sets |
|
|
492 | (3) |
|
15.3.2 Derived-process spatial CDF's |
|
|
495 | (1) |
|
15.3.2.1 Point- versus block-level spatial CDF's |
|
|
495 | (1) |
|
15.3.2.2 Covariate weighted SCDF's for misaligned data |
|
|
496 | (1) |
|
15.3.3 Randomly weighted SCDF's |
|
|
496 | (5) |
Appendices |
|
501 | (28) |
|
A Spatial computing methods |
|
|
503 | (12) |
|
A.1 Fast Fourier transforms |
|
|
503 | (1) |
|
A.2 Slice Gibbs sampling for spatial process model fitting |
|
|
504 | (5) |
|
A.2.1 Constant mean process with nugget |
|
|
507 | (1) |
|
A.2.2 Mean structure process with no pure error component |
|
|
508 | (1) |
|
A.2.3 Mean structure process with nugget |
|
|
509 | (1) |
|
A.3 Structured MCMC sampling for areal model fitting |
|
|
509 | (4) |
|
A.3.1 SMCMC algorithm basics |
|
|
510 | (1) |
|
A.3.2 Applying structured MCMC to areal data |
|
|
510 | (2) |
|
A.3.3 Algorithmic schemes |
|
|
512 | (1) |
|
A.4 spBayes: Under the hood |
|
|
513 | (2) |
|
B Answers to selected exercises |
|
|
515 | (14) |
Bibliography |
|
529 | (30) |
Index |
|
559 | |