Muutke küpsiste eelistusi

E-raamat: Hierarchy of Turing Degrees: A Transfinite Hierarchy of Lowness Notions in the Computably Enumerable Degrees, Unifying Classes, and Natural Definability

  • Formaat: 240 pages
  • Sari: Annals of Mathematics Studies
  • Ilmumisaeg: 16-Jun-2020
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691200217
  • Formaat - PDF+DRM
  • Hind: 82,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 240 pages
  • Sari: Annals of Mathematics Studies
  • Ilmumisaeg: 16-Jun-2020
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691200217

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Computability theory is a branch of mathematical logic and computer science that has become increasingly relevant in recent years. The field has developed growing connections in diverse areas of mathematics, with applications suitable to topology, group theory, and other subfields.

In A Hierarchy of Turing Degrees, Rod Downey and Noam Greenberg introduce a new hierarchy that allows them to classify the combinatorics of constructions from many areas of computability theory, including algorithmic randomness, Turing degrees, effectively closed sets, and effective structure theory. This unifying hierarchy gives rise to new natural definability results for Turing degree classes, demonstrating how dynamic constructions become reflected in definability. Downey and Greenberg present numerous construction techniques involving high-level nonuniform arguments, and their self-contained work is appropriate for graduate students and researchers.

Blending traditional and modern research results in computability theory, A Hierarchy of Turing Degrees establishes novel directions in the field.

Acknowledgments ix
1 Introduction
1(22)
1.1 Historical context
1(2)
1.2 Background: unifying constructions and natural definability
3(5)
1.3 Toward the hierarchy of totally α-c.a. degrees
8(6)
1.4 The contents of this monograph
14(2)
1.5 An application to admissible computability
16(1)
1.6 Notation and general definitions
17(6)
2 α-c.a. functions
23(32)
2.1 R-c.a. functions
23(6)
2.2 Canonical well-orderings and strong notations
29(8)
2.3 Weak truth-table jumps and ωα-c.a. sets and functions
37(18)
3 The hierarchy of totally α-c.a. degrees
55(29)
3.1 Totally R-c.a. degrees
55(3)
3.2 The first hierarchy theorem: totally ωα-c.a. degrees
58(10)
3.3 A refinement of the hierarchy: uniformly totally ωα-c.a. degrees
68(6)
3.4 Another refinement of the hierarchy: totally ωα-c.a. degrees
74(6)
3.5 Domination properties
80(4)
4 Maximal totally α-c.a. degrees
84(22)
4.1 Existence of maximal totally ωα-c.a. degrees
84(10)
4.2 Limits on further maximality
94(12)
5 Presentations of left-c.e. reals
106(28)
5.1 Background
106(4)
5.2 Presentations of c.e. reals and non-total ω-c.a. permitting
110(13)
5.3 Total ω-c.a. anti-permitting
123(11)
6 m-topped degrees
134(15)
6.1 Totally ω-c.a. degrees are not m-topped
135(5)
6.2 Totally ω2-c.a. degrees are not m-topped
140(5)
6.3 Totally <ω-ω-c.a. degrees are not m-topped
145(4)
7 Embeddings of the 1-3-1 lattice
149(39)
7.1 Embedding the 1-3-1 lattice
150(17)
7.2 Non-embedding critical triples
167(9)
7.3 Defeating two gates
176(8)
7.4 The general construction
184(4)
8 Prompt permissions
188(27)
8.1 Prompt classes
188(14)
8.2 Minimal pairs of separating classes
202(10)
8.3 Prompt permission and other constructions
212(3)
Bibliography 215
Rod Downey and Noam Greenberg are professors of mathematics at Victoria University of Wellington in New Zealand. Downey is the coauthor of Parameterized Complexity, Algorithmic Randomness and Complexity, and Fundamentals of Parameterized Complexity. Greenberg is the author of The Role of True Finiteness in the Admissible Recursively Enumerable Degrees.