Muutke küpsiste eelistusi

E-raamat: High-Accuracy CMOS Smart Temperature Sensors

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date.
Preface ix
Introduction
1(8)
Temperature sensing
1(2)
CMOS smart temperature sensors
3(1)
Motivation and objectives
4(1)
Organization of the work
5(4)
References
7(2)
Dynamic offset-cancellation techniques
9(28)
Introduction
9(5)
Offset and noise in CMOS amplifiers
10(3)
Naming conventions and classification
13(1)
Autozero techniques
14(6)
Principle
14(1)
Residual noise
15(1)
Self-calibrating opamp
16(1)
Correlated double sampling
17(1)
Ping-pong opamp
17(1)
Chopper-stabilization
18(1)
Three-signal approach
19(1)
Chopper techniques
20(8)
Principle
20(2)
Residual noise
22(1)
Residual offset
23(2)
Gain accuracy
25(1)
Chopper opamp
26(2)
Nested chopper technique
28(5)
Principle
28(1)
Analysis
29(1)
Realization
30(2)
Measurement results
32(1)
Conclusions
33(4)
References
34(3)
CMOS bandgap references
37(26)
Introduction
37(3)
Temperature curves of the bipolar transistor
40(3)
Design
43(5)
Non-idealities in practical CMOS bandgap references
43(2)
Curvature correction techniques
45(3)
Realization
48(10)
Filtering of modulated offset
48(4)
Nested chopper technique
52(2)
Piece-wise-linear circuit implementation
54(1)
Measurement results
55(3)
Conclusions
58(5)
References
60(3)
Design of CMOS Smart Temperature Sensors
63(16)
Introduction
63(3)
Accuracy
64(1)
Power consumption
65(1)
Analog-to-Digital conversion
66(5)
Frequency conversion
67(1)
Duty-cycle modulation
68(1)
Sigma-delta A-to-D conversion
69(2)
Kelvin-to-Celsius conversion
71(2)
Curvature correction
73(1)
Single transistor temperature sensors
74(3)
Bus interfaces
77(2)
References
78(1)
Realizations of CMOS Smart Temperature Sensors
79(38)
Tyre monitoring system
79(14)
Motivation
79(3)
Specification
82(1)
Design of the tyre temperature sensor
83(2)
Detailed design of the tyre temperature sensor
85(5)
Measurement results
90(3)
High-accuracy temperature sensor
93(13)
Motivation
93(2)
Specification
95(3)
Design
98(7)
Measurement results
105(1)
Remote microprocessor temperature sensor
106(8)
Motivation
106(2)
Specification
108(2)
Design of the single-transistor temperature sensor interface
110(1)
Detailed design of the remote temperature sensor
111(2)
Measurement results
113(1)
Conclusions
114(3)
References
116(1)
Appendix 117(2)
Index 119