Muutke küpsiste eelistusi

E-raamat: High Level Radioactive Waste (HLW) Disposal, A Global Challenge

  • Formaat: 320 pages
  • Ilmumisaeg: 17-Oct-2011
  • Kirjastus: WIT Press
  • ISBN-13: 9781845645670
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 206,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 320 pages
  • Ilmumisaeg: 17-Oct-2011
  • Kirjastus: WIT Press
  • ISBN-13: 9781845645670
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes all the techniques and procedures required for designing and constructing a repository for hazardous waste and for assessing its function in short- and long-term perspectives. It provides new aspects on disposal of such waste, especially HLW, by making it clear that, in contrast to the common belief that the rock itself is an effective barrier to the transport of contaminants like radionuclides, tectonics and long-term changes in the rock structure will make it serve only as a "mechanical support to the chemical apparatus", while effective retention of the hazardous elements is solely provided by properly designed and manufactured containers ("canisters"). This brings the longevity of the containers in focus, which in turn, requires that all degrading physic/chemical processes are considered. This occupies a considerable part of the book.Areas of interest for this book are deep geological disposal, rock structure, geohydrology, rock mechanics, engineered barriers and risk assessment.
Chapter 1 Introduction
1(16)
1.1 Highly radioactive waste
1(4)
1.1.1 Radioactivity
2(3)
1.1.2 Heat production
5(1)
1.2 National and international work
5(1)
1.3 Principles for disposal of HLW, operational time, depths
6(5)
1.3.1 The multiple barrier principle
6(3)
1.3.2 Operational time
9(1)
1.3.3 Depth
9(2)
1.4 State-of art assessment of rock types for disposal of HLW
11(3)
1.4.1 Crystalline rock
11(1)
1.4.2 Argillaceous rock including clastic clay
12(1)
1.4.3 Salt rock
13(1)
1.5 Options for HLW disposal
14(3)
References
14(3)
Chapter 2 Geological basis
17(40)
2.1 What is the role of the host rock for the performance of an HLW repository?
17(1)
2.2 Rock types considered for HLW disposal
18(1)
2.2.1 Crystalline rock
18(1)
2.2.2 Argillaceous rock
18(1)
2.2.3 Salt rock
19(1)
2.3 Rock structure
19(5)
2.3.1 Definitions
19(2)
2.3.2 Categorization of structural elements
21(3)
2.4 Constitution and evolution of the shallow earth crust -- the far field
24(10)
2.4.1 Origin of small-scale discontinuities
24(2)
2.4.2 Evolution of large-scale rock structure
26(6)
2.4.3 Impact of earthquakes and glaciation on the large-scale rock stnicture and hydraulic performance
32(2)
2.5 Near-field rock
34(17)
2.5.1 Roles with respect to the function of engineered barriers
34(1)
2.5.2 Impact of repository construction on the performance of the near-field rock
34(3)
2.5.3 Impact of deposition holes on the performance of the surrounding rock
37(3)
2.5.4 Impact on the rock by boring and blasting tunnels and holes-- EDZ
40(11)
2.6 The constitution of different rock types hosting repositories
51(6)
2.6.1 Crystalline rock
51(2)
2.6.2 Salt and argillaceous rock, and clastic clay
53(2)
References
55(2)
Chapter 3 Engineered barriers
57(32)
3.1 How is release of radionuclides hindered?
57(2)
3.2 HLW
59(2)
3.3 Canisters
61(3)
3.3.1 Design and material
61(1)
3.3.2 Canister longevity
62(2)
3.4 Buffer
64(25)
3.4.1 The role of clays in a repository
64(1)
3.4.2 Smectite minerals
64(2)
3.4.3 Hydrated smectite minerals
66(3)
3.4.4 Maturation of the buffer
69(2)
3.4.5 The hydraulic conductivity of smectite clays
71(2)
3.4.6 The gas conductivity of smectite clays
73(2)
3.4.7 The ion diffusion capacity of smectite ciays
75(3)
3.4.8 The stress/strain properties of smectite clays
78(8)
References
86(3)
Chapter 4 Performance of barriers
89(34)
4.1 Which are the most important functions of the barriers?
89(1)
4.2 What impact does the confining rock have on the engineered barriers?
89(15)
4.2.1 General
89(1)
4.2.2 Tectonic impact
90(2)
4.2.3 Structural implications for earthquakes and large rock strain
92(1)
4.2.4 Numerical modelling of large-scale strain
92(2)
4.2.5 Numerical modelling of small-scale strain
94(2)
4.2.6 Near-field stability issues
96(1)
4.2.7 Time-dependent strain
97(2)
4.2.8 Impact of glaciation on repository rock
99(5)
4.3 Canister performance
104(1)
4.3.1 General
104(1)
4.4 Performance of buffer clay
105(18)
4.4.1 Hydraulic conductivity
105(7)
4.4.2 Accuracy
112(5)
4.4.3 Expandability
117(2)
References
119(4)
Chapter 5 Long-term performance of the engineered barriers
123(78)
5.1 Canisters
123(2)
5.2 Buffer
125(22)
5.2.1 Conceptual model of the evolution of the buffer
125(4)
5.2.2 Maturation of the SKB buffer
129(1)
5.2.3 Theoretical modelling of buffer maturation
130(3)
5.2.4 Modelling of buffer evolution-the "Codes"
133(4)
5.2.5 Accuracy of themio-hydro-mechanical-chemical (THMC) prediction
137(8)
5.2.6 Anomalies caused by instrumentation
145(2)
5.3 Changes in buffer constitution and properties by hydrothennal processes
147(54)
5.3.1 Basic
147(2)
5.3.2 Natural analogues
149(3)
5.3.3 THMC laboratory tests
152(19)
5.3.4 Tentative conclusions
171(4)
5.3.5 Modelling of conversion of smectite to non-expanding minerals
175(5)
5.3.6 Conclusive remarks concerning mineralogical changes in buffer clay
180(1)
5.3.7 Rheological issues
181(4)
5.3.8 Impact of physical processes on the buffer performance
185(12)
References
197(4)
Chapter 6 Repository concepts for HLW
201(58)
6.1 Principles
201(1)
6.2 Crystalline rock
201(19)
6.2.1 General
201(1)
6.2.2 SKB's concept KBS-3V
202(3)
6.2.3 Closing the repositoiy
205(4)
6.2.4 Borehole plugging
209(1)
6.2.5 SKB's concept KBS-3H
210(5)
6.2.6 Other concepts
215(5)
6.3 Argillaceous rock
220(16)
6.3.1 General
220(4)
6.3.2 Examples of national concepts
224(12)
6.4 Salt rock
236(4)
6.4.1 General
236(2)
6.4.2 Description of disposal concepts
238(1)
6.4.3 Function of the repository
239(1)
6.4.4 Detailed design principles
240(1)
6.5 Performance
240(11)
6.5.1 Repositories in crystalline and argillaceous rock
240(5)
6.5.2 Repositories in salt rock
245(6)
6.6 Sealing of deep boreholes
251(8)
6.6.1 The SKB/POSIVA study
251(1)
6.6.2 Tight seals
252(4)
References
256(3)
Chapter 7 Alternative concepts
259(24)
7.1 General
259(1)
7.2 Canisters
259(3)
7.2.1 Identified risks
259(1)
7.2.2 The HIPOW canister
260(2)
7.3 Buffer
262(11)
7.3.1 Criteria set for safe function of the buffer
262(1)
7.3.2 Identified risks for SKB type concepts
263(1)
7.3.3 Historical overview
264(1)
7.3.4 Buffer candidates
264(3)
7.3.5 Longevity
267(3)
7.3.6 Impact of erosion on the buffer
270(3)
7.3.7 Stiffening, an issue of fundamental importance for the ultimate selection of a suitable candidate buffer
273(1)
7.4 Ranking of candidate buffers
273(1)
7.4.1 Buffer blocks
273(1)
7.5 Other buffer components, backfills
274(1)
7.5.1 Buffer geometry issues
274(1)
7.6 Alternative orientation of deposition holes
275(1)
7.7 Backfilling of tunnels and rooms with no waste
276(7)
7.7.1 Drainage conditions
276(1)
7.7.2 Materials and placement of earthen backfills
277(3)
References
280(3)
Chapter 8 Risk assessment and challenges
283(12)
8.1 General
283(1)
8.2 Performance assessment of the repository
284(5)
8.2.1 Assessed scenarios
284(2)
8.2.2 Retrievability and monitoring
286(2)
8.2.3 Risk constraint of exposure
288(1)
8.3 Current repository design and risk issues
289(2)
8.3.1 Repositories hi crystalline and argillaceous rock
289(1)
8.3.2 Repositories in salt rock
289(1)
8.3.3 Repositories in clastic clay
290(1)
8.4 Design requirements related to safety
291(4)
8.4.1 Containment of radionuclides
291(1)
8.4.2 Long-tenn radiological safety
291(1)
8.4.3 Safety in the operational phase
292(1)
8.4.4 Criticality
292(1)
8.4.5 Non-radiological environmental impact
292(1)
8.4.6 Flexibility
293(1)
8.4.7 Retrievability of the waste
293(1)
8.4.8 Technical feasibility
293(1)
References
293(2)
Chapter 9 Concluding remarks
295
9.1 Lessons learned and potential areas for improvement
295(4)
9.1.1 General
295(1)
9.1.2 Construction phase
295(2)
9.1.3 Operation phase
297(1)
9.1.4 Transient phase
297(1)
9.1.5 Long term phase
298(1)
9.2 Final comment
299
Roland Pusch (PhD Geotechnique, PhD Geology) is the author or co-author of several books on rock geomechanics, has been a professor of rock and soil mechanics, and has served on the editorial boards of international journals. Long involved in research on clay buffers for containment of nuclear waste, his current research is on their longevity. Raymond N. Yong, CQ, MSc, MEng, PhD, CEng, FRS(C), is Emeritus Professors of McGill University. He has been the recipient of the Killam Prize (Canada's highest scientific prize), the ASTM's Charles Dudley Prize, the Canadian Geotechnical Society's Legget Prize, and the Canadian Environmental Achievement Award (Lifetime Achievement), from Environment Canada. A Fellow of the Royal Society Canada and a Chevalier de l'Ordre National du Quebec, he is an authority on contaminated soil and its mitigation, an international consultant on hazardous waste disposal, and the author or co-author of numerous books and papers in the field. He was involved in the early research on clay barriers for containment of radioactive waste. Masashi Nakano, PhD, Professor Emeritus, The University of Tokyo, is the recipient of the 2007 International award from the International Society of Paddy and Water Environmental Engineering and the 2009 Groundwater award from the Japan Association of Groundwater Hydrology. He has written numerous papers in the field of soil physics. He has served with the Japan Atomic Energy Agency and its predecessors and has been involved with planning for the disposal of radioactive waste in Japan since the beginning. His current research involves clay science.