Muutke küpsiste eelistusi

E-raamat: High-Order Models in Semantic Image Segmentation

(Professor, Departement de Genie de la Production Automatisee, ETS, Montreal, Canada)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Jun-2023
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128092293
  • Formaat - EPUB+DRM
  • Hind: 115,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Jun-2023
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128092293

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging.

  • Gives an intuitive and conceptual understanding of this mathematically involved subject by using a large number of graphical illustrations
  • Provides the right amount of knowledge to apply sophisticated techniques for a wide range of new applications
  • Contains numerous tables that compare different algorithms, facilitating the appropriate choice of algorithm for the intended application
  • Presents an array of practical applications in computer vision and medical imaging
  • Includes code for many of the algorithms that is available on the book’s companion website
1. Introductory Background
2. Basic segmentation models
3. Standard optimization techniques
4. High-order models
5. Advanced optimization: Auxiliary functions and pseudo bounds
6. Advanced optimization: Trust region
7. Medical imaging applications
8. Appendix
Ismail Ben Ayed received a Ph.D. degree (with the highest honor) in the area of computer vision from the National Institute of Scientific Research (INRS-EMT), University of Quebec, Montreal, QC, Canada, in May 2007, under the guidance of Professor Amar Mitiche. Since then, he has been a research scientist with GE Healthcare, London, ON, Canada, conducting research in medical image analysis. He also holds an Adjunct Professor appointment at Western University, department of Medical Biophysics. He co-authored a book, over 50 peer-reviewed papers in reputable journals and conferences, and six patents. He received a GE recognition award in 2012 and a GE innovation award in 2010

Ismail Ben Ayed is an image segmentation and optimization expert who has authored over 60 peer-reviewed articles in the field and has co-authored the book Variational and Level Set Methods in Image Segmentation, 2011, which is receiving a high citation rate.