Muutke küpsiste eelistusi

E-raamat: High Plasticity Magnesium Alloys

, (Professor, Chongqing University, China, and vice-director of the National Engineering Research Center for Magnesium Alloys (CCMg), Cho), , , (Professor, Chongqing University, China, and an Academician in the Chinese Academy of Engineering.)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 21-Jan-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128201114
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 178,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 21-Jan-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128201114
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

High Plasticity Magnesium Alloys focuses on the microstructure, mechanical properties and processing methods of magnesium alloy materials. The title offers theory and methods on high-plasticity magnesium alloys, including phase diagram construction, alloying and deformation. Four typical high-plasticity magnesium alloys are discussed through thermodynamic phase diagram construction and the characterization of their microstructure, mechanical properties and texture at as-cast, extruded, rolled and heat-treated states. Chapters update principle calculations for the effects of alloying elements, Mg-Gd-Zr medium strength and high-plasticity alloys, medium strength and high-plasticity Mg-Mn based alloys, medium strength and high-plasticity Mc-Sn based alloys, and Mg-Gd-Y-Zn-Mn high-strength and high-plasticity magnesium alloys.

This book presents the plasticity of magnesium alloys, and guides the design and development of new high-strength and high-plasticity magnesium alloys. It provides detailed solutions for practicing industrial engineers.

  • Presents in-depth theory and research methods on high-plasticity magnesium alloys
  • Considers the microstructure, mechanical properties and processing methods of high-performance magnesium alloys
  • Shows the first principles needed to calculate the effects of various alloying elements
  • Introduces the development of magnesium alloys with relatively high plasticity
  • Characterizes the plasticity of polycrystalline metallic materials
  • Provides detailed solutions for industrial engineers who need to use high-performance magnesium alloys
Preface ix
1 Overview
1(46)
1.1 High-plasticity magnesium alloys and their processing technologies
1(2)
1.2 Mg---Al alloys
3(2)
1.3 Mg---Zn alloys
5(2)
1.4 Mg---Mn alloys
7(16)
1.4.1 Mg---RE alloys
10(1)
1.4.2 Mg---Li alloys
11(1)
1.4.3 Mg---Sn alloys
12(1)
1.4.4 Processing technologies of high plastic magnesium alloys
13(3)
1.4.5 Influence factors to the plasticity of magnesium alloys
16(7)
1.5 Texture
23(9)
1.5.1 Deformation mechanisms of magnesium alloys
24(7)
1.5.2 Characterization of plastic deformation of magnesium alloys
31(1)
1.6 Macrotexture
32(2)
1.7 Microtexture
34(2)
1.7.1 Static tensile test
35(1)
1.7.2 Evaluation of anisotropy
36(1)
1.8 Asymmetry of tension and compression
36(1)
1.9 Anisotropy of mechanical properties
36(1)
1.10 Plastic strain ratio and plane anisotropy coefficient
37(10)
1.10.1 Erichsen drawing test
38(1)
Further Reading
38(9)
2 "Solid solution strengthening and ductilizing" theory for magnesium alloys
47(36)
2.1 Alloy design theory of solid solution strengthening and ductilizing
47(2)
2.2 Theoretical calculation of solid solution strengthening and ductilizing
49(12)
2.2.1 Effect of alloying elements on stacking fault energy
50(1)
2.2.2 Stacking fault energy (I2) for the basal plane of Mg
51(3)
2.2.3 Effect of alloying elements on generalized stacking fault energy
54(1)
2.2.4 Effect of alloying elements on critical resolved shear stress
55(1)
2.2.5 Calculation methods for critical resolved shear stress
56(3)
2.2.6 Site preferences of alloying elements in Mg crystal
59(2)
2.3 Experimental verification for the site preferences of alloying elements by X-ray diffraction
61(12)
2.3.1 Calculation of theoretical critical shear strength
66(3)
2.3.2 Calculation of modified stacking fault energy and critical resolved shear stress
69(4)
2.4 Experimental verification of solid solution strengthening and ductilizing
73(1)
2.5 Application of solid solution strengthening and ductilizing
74(3)
2.6 Summary
77(6)
Reference
79(1)
Further Reading
79(4)
3 Ultrahigh plasticity Mg---Gd---Zr alloy
83(36)
3.1 Microstructure and properties of as-cast Mg---Gd---Zr alloy
83(3)
3.1.1 Effect of Gd content on microstructure and properties
83(2)
3.1.2 Effect of Gd addition on lattice parameters of as cast alloy matrix
85(1)
3.2 Microstructure and properties of as-quenched alloy
86(8)
3.2.1 Effect of solution temperature on microstructure and properties of Vk61 alloy
86(3)
3.2.2 Effect of Gd content on microstructure and properties of as-quenched Mg---xGd---0.6Zr alloy
89(5)
3.3 Microstructures and mechanical properties of extruded Mg---Gd---Zr alloy
94(5)
3.3.1 Effect of pretreatment on microstructure and mechanical properties of extruded Mg---xGd---0.6Zr alloy
94(3)
3.3.2 Effect of Gd addition on lattice parameters of extruded alloys
97(2)
3.4 High plasticity mechanism of Mg---Gd---Zr alloy
99(15)
3.4.1 Microstructure and plasticity of as-cast and extruded VK21 alloys
99(5)
3.4.2 Effect of extrusion process on microstructure and plasticity of VK21 alloy
104(7)
3.4.3 Effect of heat treatment on microstructure and plasticity of Vk21 alloy
111(3)
3.6 Summary
114(5)
References
114(1)
Further Reading
115(4)
4 Medium-strength and high-plasticity Mg---Mn-based alloys
119(48)
4.1 Microstructures and properties of Mg---Mn-based alloy
119(10)
4.1.1 Effect of Mn on microstructures of Mg---Mn-based alloy
119(7)
4.1.2 Effect of Mn on mechanical properties of Mg---Mn alloys
126(3)
4.1.3 Effect of Mn on fracture surfaces of Mg---Mn alloys
129(1)
4.2 Effect of Al on the microstructure and mechanical properties of Mg---1Mn---Al alloy
129(22)
4.2.1 Effect of Al on the microstructure of Mg---1Mn---Al alloy
130(5)
4.2.2 Effect of Al on the mechanical properties of Mg---1Mn---Al alloy at room temperature
135(2)
4.2.3 Fracture surfaces
137(1)
4.2.4 Effect of minor Al on microstructures of Mg---1Mn---Al Alloy
138(8)
4.2.5 Effect of minor Al on mechanical properties of Mg---1Mn---Al alloy
146(5)
4.3 Effect of Y on microstructures and properties of Mg---1Mn---Y alloy
151(5)
4.3.1 Effect of Y on the microstructure of Mg---1Mn---Y alloy
151(1)
4.3.2 Effect of Y on the mechanical properties of Mg---1Mn---Y alloy
152(3)
4.3.3 Fracture surface
155(1)
4.4 The mechanism of high plasticity of Mg---Mn alloy and the influence of aluminum and yttrium
156(5)
4.4.1 Analysis on the formation of microstructures of Mg---Mn alloys
156(2)
4.4.2 High-plasticity mechanism of Mg---Mn alloy
158(2)
4.4.3 Effect of alloying elements aluminum and yttrium
160(1)
4.5 Summary
161(6)
Further Reading
163(4)
5 Medium-strength and high-plasticity Mg---Sn-based alloys
167(80)
5.1 Microstructure and property of extruded Mg-Sn alloy
167(3)
5.2 Phase diagram and alloy design of Mg---Al---Sn alloy
170(15)
5.2.1 Construction and verification of phase diagram
174(5)
5.2.2 Alloy design
179(6)
5.3 Microstructure and property of the Mg---Al---Sn---Mn cast alloy
185(22)
5.3.1 Phase composition and microstructure of Mg---Al---Sn---Mn alloy
185(11)
5.3.2 Property of the as-cast Mg---AI---Sn---Mn alloy
196(4)
5.3.3 Effect of Sn on the microstructure and property of AM alloy
200(7)
5.4 Microstructure and property of the wrought Mg---Al---Sn---Mn alloy
207(23)
5.4.1 Effect of Al on the microstructure and property of the as-extruded Mg---Al---Sn---Mn alloy
207(13)
5.4.2 Effect of Sn on the microstructure and property of as-extruded Mg---Al---Sn---Mn alloy
220(3)
5.4.3 Effect of extrusion temperature on the microstructure and property of the alloy
223(7)
5.5 Hot deformation parameter and constitutive equation of Mg---Al---Sn---Mn alloy
230(13)
5.5.1 Hot deformation parameter and constitutive equation of ATM110 alloy
231(4)
5.5.2 Hot deformation parameter and constitutive equation of ATM130 alloy
235(2)
5.5.3 Hot deformation parameter and constitutive equation of ATM310 alloy
237(3)
5.5.4 Hot deformation parameter and constitutive equation of ATM330 alloy
240(3)
5.6 Summary
243(4)
References
245(2)
6 Microstructure and mechanical properties of the high-strength Mg---Gd---Y---Zn---Mn alloy
247(46)
6.1 Effect of extrusion on the microstructure and mechanical properties of Mg---Gd---Y---Zn---Mn alloy
247(12)
6.1.1 Microstructure of the as-cast Mg---Gd---Y---Zn---Mn alloy before and after homogenization annealing
247(2)
6.1.2 Effect of extrusion ratio on the microstructure and mechanical properties of the extruded Mg---Gd---Y---Zn---Mn alloy bar
249(6)
6.1.3 Microstructure and mechanical properties of the extruded Mg---Gd---Y---Zn---Mn alloy sheet
255(1)
6.1.4 Aging treatment of the extruded Mg---Gd---Y---Zn---Mn alloy
256(3)
6.2 Effect of rolling on the microstructure and mechanical properties of the Mg---Gd---Y---Zn---Mn alloy
259(20)
6.2.1 Exploration of rolling process parameters of the as-annealed Mg---Gd---Y---Zn---Mn alloy
260(5)
6.2.2 Rolling deformation of the homogenized annealed Mg---Gd---Y---Zn---Mn alloy and its microstructure and mechanical properties
265(5)
6.2.3 "Rolling+solid solution+rolling" process of as-cast Mg---Gd---Y---Zn---Mn alloy and its microstructure and mechanical properties
270(9)
6.3 High-plasticity mechanism of Mg---Gd---Y---Zn---Mn alloy
279(11)
6.3.1 Effect of long-period stacking order structure phase
279(6)
6.3.2 Combined effects of LPSO phase and precipitation phase
285(2)
6.3.3 Effect of Mn element
287(3)
6.4 Summary
290(3)
References
291(2)
Index 293
Fusheng Pan is Professor at Chongqing University in China, and an Academician in the Chinese Academy of Engineering. He received his PhD from Northwestern Polytechnic University. He is an honorary professor at the University of Queensland, and a foreign member of the Academy of Mining Sciences in Russia, as well as a member of the Asian Pacific Academy of Materials. His research focusses on magnesium and aluminum alloys. He holds over 130 patents, and has published over 450 articles internationally, as well as ten national and industrial standards. Sixteen of his developed magnesium alloys are included in the national standards (GB/T). He is chairman of ISO TC 79/SC 5 (magnesium and magnesium alloys), edits the Journal of Magnesium and Alloys, and has chaired the International Conference on Magnesium Alloys, as well as the UK-China Advanced Materials Symposium. Bin Jiang is Professor at Chongqing University, and vice-director of the National Engineering Research Center for Magnesium Alloys (CCMg). He is also director of materials, and a leader of innovation in national programs, including in the Ministry of Science and Technology. He is the director of China Materials Research Society, executive director of National Magnesium Alloy and Application Professional Committee, secretary general of Science Popularization Work Committee of China Materials Research Society, and head of the deformation magnesium alloy working group in International Organization for Standardization (ISO). His research focusses on the alloys and processing technology of magnesium. He has published over 70 papers, and also holds 35 authorized patents. He is a leader in the field. Jingfeng Wang is Professor at Chongqing University in China, and vice-director of the National Engineering Research Center for Magnesium Alloys (CCMg), and Distinguished Professor of Chang Jiang Scholars Program. His main research interests are the research and development of new structure and function integrated magnesium alloy materials, new magnesium alloy plastic processing technology and extruded profiles and forging products. Yaobo Hu received his B. S. and Ph. D. degrees from the College of Materials Science and Engineering, Huazhong University of Science and Technology. He was a Visiting Scholar with the University of Texas at Austin, USA, from 2011 to 2012. He is currently an associate professor in the National Engineering Research Center for Magnesium Alloys, Chongqing University. His research interests cover the synthesis, understanding, and applications of high ductility magnesium alloys. is Associate Research Fellow at Chongqing Jiaotong University in China. She received her PhD degree from the College of Materials Science and Engineering, Chongqing University. Her main research interests are the materials calculation by first principle method, the formability and the stacking fault energy of Magnesium alloys.