Muutke küpsiste eelistusi

E-raamat: High-Speed Photodiodes in Standard CMOS Technology

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

High-speed Photodiodes in Standard CMOS Technology describes high-speed photodiodes in standard CMOS technology which allow monolithic integration of optical receivers for short-haul communication. For short haul communication the cost aspect is important , and therefore it is desirable that the optical receiver can be integrated in the same CMOS technology as the rest of the system. If this is possible then ultimately a singe-chip system including optical inputs becomes feasible, eliminating EMC and crosstalk problems, while data rate can be extremely high.



The problem of photodiodes in standard CMOS technology it that they have very limited bandwidth, allowing data rates up to only 50Mbit per second. High-speed Photodiodes in Standard CMOS Technology first analyzes the photodiode behaviour and compares existing solutions to enhance the speed. After this, the book introduces a new and robust electronic equalizer technique that makes data rates of 3Gb/s possible, without changing the manufacturing technology. The application of this technique can be found in short haul fibre communication, optical printed circuit boards, but also photodiodes for laser disks.
1 Introduction 1(6)
1.1 Outline
2(5)
2 Short range optical interconnection 7(26)
2.1 Why optical interconnection?
7(4)
2.1.1 Electrical and Optical Interconnection - Similarities
8(1)
2.1.2 Electrical and Optical Interconnection - Differences
9(2)
2.2 Characteristics of light
11(1)
2.3 Optical fiber types
12(4)
2.3.1 Single-mode fibers
12(1)
2.3.2 Multimode fibers
12(4)
2.3.3 Plastic optical fibers
16(1)
2.4 High intensity light sources
16(2)
2.4.1 Lasers
17(1)
2.4.2 Light Emitting Diodes (LEDs)
18(1)
2.5 Photodetectors - introduction
18(6)
2.5.1 Ideal photodetector
19(1)
2.5.2 Absorption of light in silicon
20(4)
2.6 High-speed optical receivers in CMOS for λ = 850 nm-literature overview
24(9)
2.6.1 Using standard CMOS technology
24(3)
2.6.2 CMOS technology modification
27(6)
3 CMOS photodiodes for λ = 850 nm 33(46)
3.1 Introduction
34(4)
3.2 Bandwidth of photodiodes in CMOS
38(32)
3.2.1 Intrinsic (physical) bandwidth
38(23)
3.2.2 Comparison between simulations and measurements
61(4)
3.2.3 N+/p-substrate diode
65(1)
3.2.4 P+/nwell/p-substrate photodiode with low-resistance substrate in adjoined-well technology
66(4)
3.3 Intrinsic (physical) photodiode bandwidth
70(2)
3.4 Extrinsic (electrical) photodiode bandwidth
72(3)
3.5 Noise in photodiodes
75(1)
3.6 Summary and conclusions
75(4)
4 High data-rates with CMOS photodiodes 79(26)
4.1 Introduction
79(2)
4.2 Transimpedance amplifier design
81(5)
4.2.1 Transimpedance amplifiers and extrinsic bandwidth
82(1)
4.2.2 Impact of noise: BER
83(1)
4.2.3 Noise of the TIA
84(2)
4.3 Photodiode selection
86(2)
4.4 Equalizer design
88(3)
4.5 Robustness on spread and temperature
91(4)
4.6 Experimental results
95(7)
4.6.1 Circuit details and measurement setup
95(2)
4.6.2 Optical receiver performance without equalizer
97(1)
4.6.3 Optical receiver performance with equalizer
97(2)
4.6.4 Robustness of the pre-amplifier: component spread
99(1)
4.6.5 Robustness of the pre-amplifier: diode spread
100(2)
4.7 Conclusions
102(3)
5 Bulk CMOS photodiodes for λ = 400 nm 105(18)
5.1 Introduction
106(1)
5.2 Finger nwell/p-substrate diode in adjoined-well technology
107(2)
5.3 Finger n+/nwell/p-substrate diode
109(6)
5.3.1 Time domain measurements
113(2)
5.4 Finger n+/p-substrate photodiode in separate-well technology
115(1)
5.5 Finger p+/nwell/p-substrate in adjoined-well technology
116(2)
5.5.1 Time domain measurements
117(1)
5.6 p+/nwell photodiode
118(1)
5.7 Conclusion
119(4)
6 Polysilicon photodiode 123(20)
6.1 High-speed lateral polydiode
123(11)
6.1.1 Pulse response of the poly photodiode
127(3)
6.1.2 Diffusion current outside the depletion region
130(1)
6.1.3 Frequency characterization of the polysilicon photodiode
131(3)
6.2 Noise in polysilicon photodiodes
134(1)
6.2.1 Dark leakage current in the polysilicon diode
134(1)
6.3 Time domain measurements
135(3)
6.4 Quantum efficiency and sensitivity
138(1)
6.5 Conclusion
139(4)
7 CMOS photodiodes: generalized 143(16)
7.1 Introduction
143(2)
7.2 Generalization of CMOS photodiodes
145(1)
7.3 Device layer - photocurrent amplitude
146(9)
7.3.1 Device layer - photocurrent bandwidth
146(2)
7.3.2 Substrate current-photocurrent amplitude
148(2)
7.3.3 Substrate current-photocurrent bandwidth
150(2)
7.3.4 Depletion region current
152(1)
7.3.5 Depletion region - photocurrent bandwidth
153(1)
7.3.6 Total photocurrent
153(2)
7.4 Analog equalization
155(1)
7.5 Summary and Conclusions
156(3)
8 Conclusions 159
8.1 Conclusions
159