Muutke küpsiste eelistusi

E-raamat: Higher Ramanujan Equations and Periods of Abelian Varieties

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We describe higher dimensional generalizations of Ramanujan's classical differential relations satisfied by the Eisenstein series E2, E4, E6. Such "higher Ramanujan equations" are given geometrically in terms of vector fields living on certain moduli stacks classifying abelian schemes equipped with suitable frames of their first de Rham cohomology. These vector fields are canonically constructed by means of the Gauss-Manin connection and the Kodaira-Spencer isomorphism. Using Mumford's theory of degenerating families of abelian varieties, we construct remarkable solutions of these differential equations generalizing (E2,E4,E6), which are also shown to be defined over Z. This geometric framework taking account of integrality issues is mainly motivated byquestions in Transcendental Number Theory regarding an extension of Nesterenko's celebrated theorem on the algebraic independence of values of Eisenstein series. In this direction, we discuss the precise relation between periods of abelian varieties and the values of the above referred solutions of the higher Ramanujan equations, thereby linking the study of such differential equations to Grothendieck's Period Conjecture. Working in the complex analytic category, we prove "functional" transcendence results, such as the Zariski-density of every leaf of the holomorphic foliation induced by the higher Ramanujan equations"--

Fonseca describes higher dimensional generalizations of Ramanujan's classical differential relations satisfied by the Eisenstein series, E2, E4, E6. He approaches these higher Ramanujan equations geometrically in terms of vector fields living on certain moduli stacks classifying abelian schemes equipped with suitable frames of their first de Rham cohomology. Looking in turn at the arithmetic theory and the analytic, he considers such topics as symplectic vector bundles over schemes, abelian schemes with real multiplication, the case of elliptic curves: explicit equations, analytic moduli spaces of complex abelian varieties with a symplectic-Hodge basis, and the Zarisky-density of leaves in the higher Ramanujan foliation. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Tiago J. Fonseca, IMECC-UNICAMP, Campinas-SP, Brazil.