Muutke küpsiste eelistusi

E-raamat: Hilbert And Banach Space-valued Stochastic Processes

(California State Univ, San Bernardino, Usa)
  • Formaat: 540 pages
  • Sari: Series On Multivariate Analysis 13
  • Ilmumisaeg: 29-Jul-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811211768
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 140,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 540 pages
  • Sari: Series On Multivariate Analysis 13
  • Ilmumisaeg: 29-Jul-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811211768
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is a development of the book entitled Multidimensional Second Order Stochastic Processes. It provides a research expository treatment of infinite-dimensional stationary and nonstationary stochastic processes or time series, based on Hilbert and Banach space-valued second order random variables. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes as well as the stationary class. A new type of the Radon-Nikodým derivative of a Banach space-valued measure is introduced, together with Schauder basic measures, to study uniformly bounded linearly stationary processes.Emphasis is on the use of functional analysis and harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Generalizations are made to consider Banach space-valued stochastic processes to include processes of pth order for p 1. Readers may find that the covariance kernel is always emphasized and reveals another aspect of stochastic processes.This book is intended not only for probabilists and statisticians, but also for functional analysts and communication engineers.
Preface vii
I Introduction and preliminaries
1(18)
1.1 Stationary processes
1(3)
1.2 Harmonizable processes
4(5)
1.3 Multidimensional and other extensions
9(7)
Bibliographical notes
16(3)
II Hilbert modules and covariance kernels
19(38)
2.1 Normal Hilbert B(H)-modules
19(5)
2.2 Submodules, operators and functionals
24(5)
2.3 Characterization and structure
29(6)
2.4 Positive definite kernels and reproducing kernel spaces
35(15)
2.5 Harmonic analysis for normal Hilbert B(H)-modules
50(6)
Bibliographical notes
56(1)
III Stochastic measures and operator-valued bimeasures
57(112)
3.1 Semivariations and variations
57(22)
3.2 Orthogonally scattered dilations
79(13)
3.3 Gramian orthogonally scattered dilations
92(23)
3.4 The spaces L1(F) and L2(F)
115(13)
3.5 L2-spaces for bimeasures
128(11)
3.6 Riesz type theorems
139(9)
3.7 Weak topology on measures
148(14)
3.8 A Chouquet type theorem
162(4)
Bibliographical notes
166(3)
IV Radon-Nikodym derivatives and Schauder basic measures
169(68)
4.1 Pseudo Radon-Nikodym derivatives (1)
169(21)
(1) Radon-Nikodym property
170(3)
(2) Pseudo Radon-Nikodym derivatives
173(3)
(3) Existence and uniqueness
176(9)
(4) Dunford-Schwartz type integration
185(5)
4.2 Pseudo Radon-Nikodym derivatives (2)
190(22)
(1) The space L1(ζ)
190(2)
(2) Pseudo Radon-Nikodym derivatives
192(6)
(3) The spaces L1DS(ζ) and L1*(ζ)
198(7)
(4) The spaces L1DS(η) and L2(Fη)
205(1)
(5) The spaces L1*(ζ) and L2*(Mζ)
206(6)
4.3 Schauder basic measures
212(13)
4.4 Gramian Schauder basic measures
225(10)
Bibliographical notes
235(2)
V Multidimensional stochastic processes
237(62)
5.1 General concepts
237(3)
5.2 Stationary processes
240(4)
5.3 Harmonizable processes
244(12)
5.4 V-bounded processes
256(8)
5.5 Cramer and Karhunen classes
264(5)
5.6 Operator representations
269(3)
5.7 Series representations
272(5)
5.8 Moving average representations
277(2)
5.9 Approximation and convergence
279(8)
5.10 Subordination
287(9)
Bibliographical notes
296(3)
VI Special topics
299(52)
6.1 Wold decompositions
299(5)
6.2 Cramer decompositions
304(4)
6.3 The KF-class
308(7)
6.4 Gramian uniformly bounded linearly stationary processes
315(7)
6.5 Periodically correlated processes
322(12)
6.6 Absolutely summing processes
334(3)
6.7 Final remarks
337(11)
(1) Isotropic processes
337(2)
(2) Processes on hypergroups
339(4)
(3) Processes on locally compact groups
343(5)
Bibliographical notes
348(3)
VII Applications
351(48)
7.1 Prediction problems
351(11)
7.2 Kalman filter
362(16)
7.3 Sampling theorems
378(10)
7.4 Strong laws of large numbers
388(9)
Bibliographical notes
397(2)
VIII Generalizations
399(104)
8.1 Banach space-valued random variables
399(4)
8.2 The spaces B(U,U) and B(U,U*)
403(4)
8.3 S(U,H)-valued measures
407(25)
8.4 B(U,U*)-valued measures and bimeasures
432(8)
8.5 B(U,?H)-valued processes
440(8)
8.6 B(U,V)-valued measures
448(21)
8.7 B(U,V)-valued processes
469(6)
Bibliographical notes
475(4)
References
479(24)
Indices 503(1)
Notation index 504(11)
Author index 515(4)
Subject index 519