Muutke küpsiste eelistusi

E-raamat: History of Plant Breeding

(Director, Research & Development, Hybrotec, Aschlersleben, Germany)
  • Formaat: 330 pages
  • Ilmumisaeg: 15-Dec-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351588959
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 330 pages
  • Ilmumisaeg: 15-Dec-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351588959

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

While there has been great progress in the development of plant breeding over the last decade, the selection of suitable plants for human consumption began over 13,000 years ago. Since the Neolithic era, the cultivation of plants has progressed in Asia Minor, Asia, Europe, and ancient America, each specific to the locally wild plants as well as the ecological and social conditions.

A handy reference for knowing our past, understanding the present, and creating the future, this book provides a comprehensive treatment of the development of crop improvement methods over the centuries. It features an extensive historical treatment of development, including influential individuals in the field, plant cultivation in various regions, techniques used in the Old World, and cropping in ancient America. The advances of scientific plant breeding in the twentieth century is extensively explored, including efficient selection methods, hybrid breeding, induced polyploidy, mutation research, biotechnology, and genetic manipulation. Finally, this book presents information on approaches to the sustainability of breeding and to cope with climatic changes as well as the growing world population.
Preface xi
Acknowledgment xiii
Author xv
User's Guide xvii
Chapter 1 Introduction
1(4)
Chapter 2 Plant Breeding Since 10,000 Years BC
5(42)
2.1 The Old World
10(10)
2.1.1 Sumeria
10(1)
2.1.2 Mesopotamia and Babylonia
11(3)
2.1.3 Judea
14(1)
2.1.4 Egypt
15(5)
2.2 Plant Cultivation in Asia Since Neolithic Times
20(6)
2.2.1 The Old China
22(1)
2.2.1.1 Tibet
23(1)
2.2.2 Medieval to Early Modern China
24(1)
2.2.2.1 Japan
24(1)
2.2.3 India
25(1)
2.3 Cropping Plants in Ancient America
26(3)
2.4 The Greek and Roman World
29(5)
2.5 Arabic Influences on Western Agriculture
34(1)
2.6 Medieval and Renaissance Agriculture in Europe
35(4)
2.7 Plant Breeding by Experience during the Seventeenth to Nineteenth Centuries
39(8)
Chapter 3 MENDEL's Contribution to Genetics and Breeding
47(84)
3.1 Rediscovery of MENDEL's Laws---Beginning of Genetic Research
52(2)
3.2 Scientific Plant Breeding with the Beginning of the Twentieth Century
54(21)
3.2.1 Breeding by Selection
61(1)
3.2.2 Cross and Combination Breeding
61(6)
3.2.3 Pure Lines and Improvement of Self-Pollinated Crops
67(1)
3.2.4 Positive and Negative Mass Selection
68(2)
3.2.5 Pedigree Selection
70(1)
3.2.6 Bulk Selection
70(1)
3.2.7 Backcross Breeding
71(1)
3.2.8 Single-Seed Descent
71(1)
3.2.9 Near-Isogenic Lines as a Breeding Tool
72(1)
3.2.10 Polycross Method
73(1)
3.2.11 Shuttle Breeding
74(1)
3.2.12 Evolutionary Breeding
74(1)
3.3 Resistance Breeding as a Permanent Challenge
75(9)
3.3.1 Resistance to Pests
75(3)
3.3.2 Resistance to Environmental Stress
78(1)
3.3.2.1 Salt Stress
78(3)
3.3.2.2 Drought Tolerance
81(3)
3.4 Hybrid Breeding
84(4)
3.4.1 Synthetics
88(1)
3.5 Mutation Breeding
88(16)
3.5.1 Induced Mutation by Mutagens
90(12)
3.5.1.1 Point Mutation
102(1)
3.5.2 Somaclonal Variation by In Vitro Culture
103(1)
3.6 Polyploidy and Breeding
104(3)
3.7 Chromosome Manipulations
107(7)
3.7.1 Aneuploids
109(1)
3.7.2 Chromosome Additions
110(1)
3.7.3 Chromosome Substitutions and Translocations
111(2)
3.7.4 Chromosome-Mediated Gene Transfer
113(1)
3.7.4.1 Microprotoplast-Mediated Chromosome Transfer
114(1)
3.8 Utilization of Haploids in Breeding
114(3)
3.8.1 Doubled Haploids
114(2)
3.8.2 Dihaploids
116(1)
3.9 Grafting Methods
117(1)
3.10 Quantitative Terms in Breeding and Genetics
118(13)
3.10.1 Plot Design, Field Equipment, and Laboratory Testing
119(3)
3.10.2 Statistics in Breeding
122(4)
3.10.3 Bioinformatics
126(2)
3.10.3.1 Molecular Markers
128(3)
Chapter 4 Biotechnology and Genetic Engineering
131(36)
4.1 In Vitro Techniques
132(9)
4.1.1 Embryo Rescue
135(1)
4.1.2 Cell Fusion and Somatic Hybridization
135(2)
4.1.3 Virus Freeing
137(1)
4.1.4 Micropropagation
138(3)
4.2 Molecular Techniques in Plant Breeding
141(26)
4.2.1 Marker-Assisted Selection
141(6)
4.2.1.1 Plant Genomics
147(4)
4.2.1.2 Genomic Selection
151(1)
4.2.2 Genetically Modified Crop Plants
152(1)
4.2.2.1 Transgenesis
153(3)
4.2.2.2 Gene Editing
156(8)
4.2.2.3 Nanotechnology
164(1)
4.2.3 Transgenic Pyramiding Breeding
164(3)
Chapter 5 "Farmerceuticals," "Nutraceuticals," and Other Exotic Characters
167(6)
5.1 Neutraceuticals
171(2)
Chapter 6 Intellectual Property Rights, Plant Variety Protection, and Patenting
173(6)
6.1 Protection of New Plant Varieties
176(3)
6.1.1 Open Source Seed Initiative
177(2)
Chapter 7 Germplasm Maintenance
179(22)
7.1 General Remarks
179(3)
7.1.1 Core Collection
180(1)
7.1.2 Prebreeding
181(1)
7.1.3 Evaluation
181(1)
7.1.4 Examples
181(1)
7.2 Next-Generation Genebanking
182(1)
7.2.1 Screening Candidate Genes
182(1)
7.3 Oldest Plant Selections and Cultivars
182(19)
7.3.1 Cereals and Small Grain Crops
183(1)
7.3.1.1 Wheat (Triticum ssp.)
183(1)
7.3.1.2 Barley (Hordeum ssp.)
184(1)
7.3.1.3 Oats (Avena ssp.)
185(1)
7.3.1.4 Rye (Secale cereale)
185(2)
7.3.1.5 Maize (Zea mays)
187(1)
7.3.1.6 Rice (Oryza sativa)
188(1)
7.3.1.7 Millets
189(1)
7.3.1.8 Quinoa (Chenopodium quinoa)
190(1)
7.3.1.9 Soybean {Glycine max)
190(1)
7.3.2 Root Crops
190(1)
7.3.2.1 Potato (Solatium tuberosum)
190(2)
7.3.2.2 Sugarbeet (Beta vulgaris ssp. sacharifera)
192(1)
7.3.3 Vegetables
192(1)
7.3.3.1 Carrot (Daucus carota)
192(1)
7.3.3.2 Tomato (Lypersicon ssp.)
193(1)
7.3.3.3 Cabbage
193(1)
7.3.4 Fruits
194(1)
7.3.4.1 Apple (Malus ssp.)
194(1)
7.3.4.2 Pear (Pyrus pyrifolia)
194(1)
7.3.4.3 Banana (Ensete ventricosa, Musa ssp.)
195(1)
7.3.4.4 Grapes (Vitis vinifera)
195(2)
7.3.4.5 Olive (Olea ssp.)
197(1)
7.3.4.6 Fig (Ficus carica)
198(1)
7.3.4.7 Strawberry (Fragaria ssp.)
198(1)
7.3.5 Industrial Crops
199(1)
7.3.5.1 Cotton (Gossypium ssp.)
199(2)
Chapter 8 Future Developments
201(8)
8.1 Increased Yield and Increased Reliability of Performance, Including Photosynthetic Efficiency
202(1)
8.2 Changes in Plant Architecture Modifying Balanced Proportions of Tuber, Seed, Leaves, or Internal Characters
203(1)
8.3 Improvement of Pest and Disease Resistance
203(1)
8.4 Improved Tolerance to Abiotic Stress, Including Water-Use Efficiency
203(1)
8.5 Apomixis to Fix Hybrid Vigor
204(1)
8.6 Male Sterility Systems with Transgenics for Hybrid Seed in Self-Pollinating Crops
204(1)
8.7 Parthenocarpy for Seedless Vegetables and Fruit Trees
204(1)
8.8 Short-Cycling for Rapid Improvement of Forest and Fruit Trees as well as Tuber Crops
204(1)
8.9 Nutritional and Micronutritional Efficiency of Cereal and Tuber Crops
205(1)
8.10 Converting Annual into Perennial Crops for Sustainable Agricultural Systems
205(1)
8.11 DNA Repair and Gene Editing in Plants
206(3)
Chapter 9 In the Service of CERES---A Gallery of Breeders, Geneticists, and Persons Associated with Crop Improvement and Plant Breeding
209(70)
Bibliography 279(22)
Index 301
Rolf H. J. Schlegel, Ph.D., D.Sc., is Professor of Cytogenetics and Applied Genetics, with over thirty years of experiences in research and teaching of advanced genetics and plant breeding in Germany and Bulgaria. Prof. Schlegel is the author of more than 150 research papers and other scientific contributions, co-coordinator of international research projects, and has been a scientific consultant at the Bulgarian Academy of Agricultural Sciences for several years. He received his Masters degree in Agriculture and Plant Breeding, his Ph.D. and D.Sc. in Genetics and Cytogenetics from the Martin-Luther University Halle/S., Germany. Later he became Head of Laboratory of Chromosome Manipulation and the Department of Applied Genetics and Genetic Resources at the Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany, and the Head of the Genebank at the Institute of Wheat and Sunflower Research, General Toshevo/Varna, as well as at the Institute of Plant Biotechnology and Genetic Engineering, Sofia, Bulgaria. He was working as R & D director in a private company in Germany, and is now retired.