Muutke küpsiste eelistusi

E-raamat: Homotopy Theory of Enriched Mackey Functors: Closed Multicategories, Permutative Enrichments, and Algebraic Foundations for Spectral Mackey Functors

(Ohio State University), (Ohio State University)
  • Formaat - PDF+DRM
  • Hind: 92,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A detailed treatment of Mackey functors and homotopical applications in the broader context of enriched diagram categories, suitable for graduate students or researchers with an interest in category theory, equivariant homotopy theory, or related fields. A self-contained reference, with complete definitions and full proofs for non-expert readers.

This work develops techniques and basic results concerning the homotopy theory of enriched diagrams and enriched Mackey functors. Presentation of a category of interest as a diagram category has become a standard and powerful technique in a range of applications. Diagrams that carry enriched structures provide deeper and more robust applications. With an eye to such applications, this work provides further development of both the categorical algebra of enriched diagrams, and the homotopy theoretic applications in K-theory spectra. The title refers to certain enriched presheaves, known as Mackey functors, whose homotopy theory classifies that of equivariant spectra. More generally, certain stable model categories are classified as modules - in the form of enriched presheaves - over categories of generating objects. This text contains complete definitions, detailed proofs, and all the background material needed to understand the topic. It will be indispensable for graduate students and researchers alike.

Muu info

A detailed treatment of Mackey functors and homotopical applications in the broader context of enriched diagram categories.
1. Motivations from equivariant topology; Part I. Background on Multicategories and K-Theory Functors:
2. Categorically enriched multicategories;
3. Infinite loop space machines;
4. Homotopy theory of multicategories; Part II. Homotopy Theory of Pointed Multicategories, M1-Modules, and Permutative Categories:
5. Pointed multicategories and M1-modules model all connective spectra;
6. Multiplicative homotopy theory of pointed multicategories and M1-modules; Part III. Enrichment of Diagrams and Mackey Functors in Closed Multicategories:
7. Multicategorically enriched categories;
8. Change of multicategorical enrichment;
9. The closed multicategory of permutative categories;
10. Self-enrichment and standard enrichment of closed multicategories;
11. Enriched diagrams and Mackey functors of closed multicategories; Part IV. Homotopy Theory of Enriched Diagrams and Mackey Functors:
12. Homotopy equivalences between enriched diagram and Mackey functor categories;
13. Applications to multicategories and permutative categories; Appendices: A. Categories; B. Enriched category theory; C. Multicategories; D. Open questions; Bibliography; Index.
Niles Johnson is an Associate Professor of Mathematics at the Ohio State University at Newark. His research focuses on algebraic topology. Donald Yau is a Professor of Mathematics at the Ohio State University at Newark. His research focuses on homotopy theory and algebraic K-theory.