Muutke küpsiste eelistusi

E-raamat: How To Measure The Infinite: Mathematics With Infinite And Infinitesimal Numbers

(Univ Di Pisa, Italy), (Univ Degli Studi Di Pisa, Italy)
  • Formaat: 348 pages
  • Ilmumisaeg: 19-Feb-2019
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813276604
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 99,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 348 pages
  • Ilmumisaeg: 19-Feb-2019
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813276604
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

'This text shows that the study of the almost-forgotten, non-Archimedean mathematics deserves to be utilized more intently in a variety of fields within the larger domain of applied mathematics.'CHOICEThis book contains an original introduction to the use of infinitesimal and infinite numbers, namely, the Alpha-Theory, which can be considered as an alternative approach to nonstandard analysis.The basic principles are presented in an elementary way by using the ordinary language of mathematics; this is to be contrasted with other presentations of nonstandard analysis where technical notions from logic are required since the beginning. Some applications are included and aimed at showing the power of the theory.The book also provides a comprehensive exposition of the Theory of Numerosity, a new way of counting (countable) infinite sets that maintains the ancient Euclid's Principle: 'The whole is larger than its parts'. The book is organized into five parts: Alpha-Calculus, Alpha-Theory, Applications, Foundations, and Numerosity Theory.
Preface v
Plan of the Book xv
Notation xvii
Historical Introduction xxi
1 Ancient times xxi
2 The rise of calculus xxiii
3 The ban of infinitesimals xxvi
4 Non-Archimedean mathematics xxvii
Part 1 Alpha-Calculus
1(74)
Chapter 1 Extending the Real Line
3(10)
1 Ordered fields
3(1)
2 Infinitesimal numbers
4(2)
3 The smallest non-Archimedean field
6(2)
4 Proper extensions of the real line
8(1)
5 Standard parts
9(2)
6 Monads and galaxies
11(2)
Chapter 2 Alpha-Calculus
13(34)
1 The axioms of Alpha-Calculus
14(3)
2 First properties of Alpha-Calculus
17(3)
3 Hyper-extensions of sets of reals
20(3)
4 The Alpha-measure and the qualified sets
23(3)
5 The transfer principle, informally
26(1)
6 Hyper-extensions of functions
27(3)
7 Some more relevant basic properties
30(2)
8 Hyper-extensions of sets of numbers
32(2)
9 The Qualified Set Axiom
34(4)
10 Rings and ideals
38(3)
11 Models of Alpha-Calculus
41(6)
Chapter 3 Infinitesimal Analysis by Alpha-Calculus
47(28)
1 The normal forms
47(1)
2 Infimum and supremum
48(1)
3 Continuity
49(3)
4 Uniform continuity
52(1)
5 Derivatives
53(1)
6 Limits
54(3)
7 Alpha-limit versus limit
57(1)
8 The order of magnitude
58(3)
9 Hyperfinitely long sums and series
61(2)
10 The grid integral
63(4)
11 Equivalences with the "standard" definitions
67(4)
12 Grid integral versus Riemann integral
71(1)
13 Remarks and comments
72(3)
Part 2 Alpha-Theory
75(78)
Chapter 4 Introducing the Alpha-Theory
77(32)
1 The axioms of Alpha-Theory
77(3)
2 First properties of Alpha-Theory
80(3)
3 Some detailed proofs
83(5)
4 Hyper-images of sets
88(3)
5 Hyper-images of functions
91(3)
6 Functions of several variables
94(2)
7 Hyperfinite sets
96(2)
8 Hyperfinite sums
98(2)
9 Internal objects
100(7)
10 Remarks and comments
107(2)
Chapter 5 Logic and Alpha-Theory
109(14)
1 Some logic formalism
109(6)
2 Transfer principle
115(3)
3 Transfer and internal sets
118(2)
4 The transfer as a unifying principle
120(2)
5 Remarks and comments
122(1)
Chapter 6 Complements of Alpha-Theory
123(30)
1 Overspill and underspill
123(3)
2 Countable saturation
126(3)
3 Cauchy infinitesimal principle
129(4)
4 The S-topology
133(4)
5 The topology of Alpha-limits
137(1)
6 Superstructures
138(4)
7 Models of Alpha-Theory
142(4)
8 Existence of reflexive Alpha-morphisms
146(5)
9 Remarks and comments
151(2)
Part 3 Applications
153(56)
Chapter 7 First Applications
155(14)
1 The real line as a quotient of hyperrationals
155(1)
2 Ramsey's Theorem
156(3)
3 Grid functions
159(4)
4 Grid differential equations
163(2)
5 Peano's theorem
165(4)
Chapter 8 Gauge Spaces
169(16)
1 Main definitions
169(3)
2 Gauge Abelian spaces
172(1)
3 Topological notions for gauge spaces
173(1)
4 Topology theorems in gauge spaces
174(2)
5 Gauge spaces versus topological spaces
176(5)
6 The Epsilon-gauges
181(4)
Chapter 9 Gauge Quotients
185(12)
1 Definition of gauge quotients
185(2)
2 The differential Epsilon-ring
187(2)
3 Distributions as a gauge quotient
189(2)
4 Distributions as functionals
191(2)
5 Grid functions and distributions
193(4)
Chapter 10 Stochastic Differential Equations
197(12)
1 Preliminary remarks on the white noise
197(2)
2 Stochastic grid equations
199(2)
3 Ito's formula for grid functions
201(1)
4 The Fokker-Plank equation
202(4)
5 Remarks and comments
206(3)
Part 4 Foundations
209(52)
Chapter 11 Ultrafilters and Ultrapowers
211(12)
1 Filters and ultrafilters
211(4)
2 Ultrafilters as measures and as ideals
215(3)
3 Ultrapowers, the basic examples
218(2)
4 Ultrapowers as models of Alpha-Calculus
220(3)
Chapter 12 The Uniqueness Problem
223(10)
1 Isomorphic models of Alpha-Calculus
223(2)
2 Equivalent models of Alpha-Calculus
225(2)
3 Uniqueness up to countable equivalence
227(6)
Chapter 13 Alpha-Theory and Nonstandard Analysis
233(8)
1 Nonstandard analysis, a quick presentation
234(2)
2 Alpha-Theory is more general than nonstandard analysis
236(2)
3 Remarks and comments
238(3)
Chapter 14 Alpha-Theory as a Nonstandard Set Theory
241(20)
1 The axioms of AST
242(5)
2 Alpha Set Theory versus ZFC
247(4)
3 Cauchy infinitesimal principle and special ultrafilters
251(3)
4 The strength of Cauchy infinitesimal principle
254(3)
5 The strength of a Hausdorff S-topology
257(2)
6 Remarks and comments
259(2)
Part 5 Numerosity Theory
261(46)
Chapter 15 Counting Systems
263(14)
1 The idea of counting
263(4)
2 Cardinals and ordinals as counting systems
267(3)
3 Three different ways of counting
270(1)
4 The equisize relation
271(6)
Chapter 16 Alpha-Theory and Numerosity
277(20)
1 Labelled sets
277(3)
2 Alpha-numerosity
280(1)
3 Finite parts and sets of functions
281(2)
4 Point sets of natural numbers
283(2)
5 Numerosity of sets of natural numbers
285(2)
6 Properties of Alpha-numerosity
287(3)
7 Numerosities of sets of rational numbers
290(3)
8 Zermelo's principle and Alpha-numerosity
293(2)
9 Asymptotic density and numerosity
295(2)
Chapter 17 A General Numerosity Theory for Labelled Sets
297(10)
1 Definition and first properties
297(3)
2 From numerosities to Alpha-Calculus
300(6)
3 Remarks and comments
306(1)
Bibliography 307(6)
Index 313