|
1 Introduction to Human Action Analysis |
|
|
1 | (8) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.6 Tree-Based Approaches |
|
|
5 | (1) |
|
|
6 | (3) |
|
|
7 | (2) |
|
2 Supervised Trees for Human Action Recognition and Detection |
|
|
9 | (20) |
|
|
9 | (2) |
|
2.2 Multiclass Action Recognition |
|
|
11 | (4) |
|
2.2.1 Mutual Information-Based Classification |
|
|
11 | (1) |
|
2.2.2 Random Forest-Based Voting |
|
|
12 | (3) |
|
2.3 Action Detection and Localization |
|
|
15 | (6) |
|
2.3.1 Spatial Down-Sampling |
|
|
16 | (3) |
|
2.3.2 Top-K Search Algorithm |
|
|
19 | (2) |
|
|
21 | (5) |
|
2.4.1 Action Classification |
|
|
21 | (1) |
|
|
22 | (3) |
|
|
25 | (1) |
|
2.5 Summary of this Chapter |
|
|
26 | (3) |
|
|
27 | (2) |
|
3 Unsupervised Trees for Human Action Search |
|
|
29 | (28) |
|
|
29 | (3) |
|
3.2 Video Representation and Randomized Visual Vocabularies |
|
|
32 | (2) |
|
3.3 Action Matching Using Randomized Visual Vocabularies |
|
|
34 | (2) |
|
3.4 Efficient Action Search |
|
|
36 | (5) |
|
3.4.1 Coarse-to Hierarchical Subvolume Search Scheme |
|
|
36 | (2) |
|
3.4.2 Refinement with Hough Voting |
|
|
38 | (1) |
|
|
39 | (1) |
|
3.4.4 Computational Complexity |
|
|
40 | (1) |
|
|
41 | (13) |
|
3.5.1 Action Classification on KTH |
|
|
42 | (1) |
|
3.5.2 Action Detection on MSR II |
|
|
42 | (2) |
|
3.5.3 Action Retrieval on MSR II |
|
|
44 | (2) |
|
3.5.4 Action Retrieval on CMU Database |
|
|
46 | (2) |
|
3.5.5 Action Retrieval on Youtube Video |
|
|
48 | (1) |
|
3.5.6 Action Retrieval on UCF Sports Database |
|
|
48 | (1) |
|
3.5.7 Action Retrieval on Large-Scale Database |
|
|
49 | (1) |
|
3.5.8 Implementation Issues |
|
|
50 | (1) |
|
|
51 | (3) |
|
3.6 Summary of this Chapter |
|
|
54 | (3) |
|
|
55 | (2) |
|
4 Propagative Hough Voting to Leverage Contextual Information |
|
|
57 | (16) |
|
|
57 | (2) |
|
4.2 Activity Recognition by Detection |
|
|
59 | (2) |
|
4.3 Propagative Interest Point Matching |
|
|
61 | (2) |
|
4.3.1 Random Projection Trees |
|
|
61 | (1) |
|
4.3.2 Theoretical Justification |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (7) |
|
4.5.1 RPT on the Testing Data |
|
|
65 | (2) |
|
4.5.2 RPT on the Training Data |
|
|
67 | (3) |
|
4.5.3 Computational Complexity |
|
|
70 | (1) |
|
4.6 Summary of this Chapter |
|
|
71 | (2) |
|
|
71 | (2) |
|
5 Human Action Prediction with Multiclass Balanced Random Forest |
|
|
73 | (10) |
|
|
73 | (1) |
|
|
74 | (2) |
|
5.3 Matching and Predicting |
|
|
76 | (2) |
|
|
78 | (2) |
|
5.5 Summary of this Chapter |
|
|
80 | (3) |
|
|
81 | (2) |
|
|
83 | |