Muutke küpsiste eelistusi

E-raamat: Human Activity and Behavior Analysis: Advances in Computer Vision and Sensors: Volume 1

Edited by (Aoyama Gakuin Univ.), Edited by (Kyushu Inst. of Technology, Japan), Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume focuses on relevant activities in three main subject areas: Healthcare and Emotion, Mental Health, and Nurse Care Records.



Human Activity and Behavior Analysis relates to the field of vision and sensor-based human action or activity and behavior analysis and recognition. The book includes a series of methodologies, surveys, relevant datasets, challenging applications, ideas, and future prospects.

The book discusses topics such as action recognition, action understanding, gait analysis, gesture recognition, behavior analysis, emotion and affective computing, and related areas. This volume focuses on relevant activities in three main subject areas: Healthcare and Emotion, Mental Health, and Nurse Care Records.

The editors are experts in these arenas and the contributing authors are drawn from high-impact research groups around the world. This book will be of great interest to academics, students, and professionals working and researching in the field of human activity and behavior analysis.

Preface. Healthcare and Emotion.
1. Forecasting Parkinson's Disease
Patients' Wearing-Off using Wrist-Worn Fitness Tracker and Smartphone Dataset
John Noel Victorino, Yuko Shibata, Inoue Sozo, and Tomohiro Shibata.
2.
Toward Human Thermal Comfort Sensing: New Dataset and Analysis of Heart Rate
Variability (HRV) Under Different Activities Tahera Hossain, Yusuke Kawasaki,
Kazuki Honda, Kizito Nkurikiyeyezu, and Guillaume Lopez.
3. Reducing the
Number of Wearable Sensors and Placement Optimization by Missing Data
Imputation on Nursery Teacher Activity Recognition Akira Omi, Kensi Fujiwara,
Naoko Ishibashi, and Ren Ohmura.
4. Optimal EEG Electrode Set for Emotion
Recognition from Brain Signals: An Empirical Quest Rumman Ahmed Prodhan,
Sumya Akter, Tanmoy Sarkar Pias, and Md. Akhtaruzzaman Adnan.
5.
Translation-Delay-Aware Emotional Avatar System for Online Communication
Support Tomoya Suzuki, Akihito Taya, Yoshito Tobe, and Guillaume Lopez.
6.
Touching with eye contact and vocal greetings increases the sense of security
Miyuki Iwamoto and Atsushi Nakazawa.
7. Challenges and Opportunities of
Activity Recognition in Clinical Pathways Christina Garcia and Sozo Inoue.
Mental Health. Anxolotl, an Anxiety Companion App - Stress Detection Nuno
Gomes, Matilde Pato, Pedro Santos, Andre´ Lourenc¸ and Lourenc Rodrigues.
9.
Detection of self-reported stress level from wearable sensor data using
machine learning and deep learning-based classifiers: Is it feasible? Atzeni
Michele, Cossu Luca, Cappon Giacomo, and Vettoretti Martina.
10. A
Multi-Sensor Fusion Method for Stress Recognition Leonardo Alchieri, Nouran
Abdalazim, Lidia Alecci, Silvia Santini, and Shkurta Gashi.
11.
Classification of Stress via Ambulatory ECG and GSR Data Zachary Dair,
Muhammad Saad, Urja Pawar, Samantha Dockray, and Ruairi OReilly.
12.
Detection and Classification of Acute Psychological Stress in Free-Living:
Challenges and Achievements M. Sevil, M. Rashid, R. Askari, L. Sharp, L.
Quinn, and A. Cinar
13. IEEE EMBC 2022 Workshop and Challenge on Detection of
Stress and Mental Health Using Wearable Sensors Huiyuan Yang, Han Yu, Alicia
Choto Segovia, Maryam Khalid, Thomas Vaessen, and Akane Sano.
14.
Understanding Mental Health Using Ubiquitous Sensors and Machine Learning:
Challenges Ahead Tahia Tazin, Tahera Hossain, Shahera Hossain, and Sozo
Inoue. Nurse Care Records.
15. Improving Complex Nurse Care Activity
Recognition Using Barometric Pressure Sensors Muhammad Fikry, Christina
Garcia, Vu Nguyen Phuong Quynh, Shin- taro Oyama, Keiko Yamashita, Yuji
Sakamoto, Yoshinori Ideno, and Sozo Inoue.
16. Analysis of Care Records for
Predicting Urination Times Masato Uchimura, Haru Kaneko, and Sozo Inoue.
17.
Predicting User-specific Future Activities using LSTM-based Multi-label
Classification Mohammad Sabik Irbaz, Fardin Ahsan Sakib, and Lutfun Nahar
Lota.
18. Nurse Activity Recognition based on Temporal Frequency Features Md.
Sohanur Rahman, Hasib Ryan Rahman, Abrar Zarif, Yeasin Arafat Pritom, and Md
Atiqur Rahman Ahad.
19. Ensemble Classifier for Nurse Care Activity
Prediction Based on Care Records Bj¨orn Friedrich andAndreas Hein.
20.
Addressing the inconsistent and missing time stamps in Nurse Care Activity
Recognition Care Record Dataset Rashid Kamal, Chris Nugent, Ian Cleland, and
Paul McCullagh.
21. A Sequential-based Analytical Approach for Nurse Care
Activity Forecasting Md Mamun Sheikh, Shahera Hossain, and Md Atiqur Rahman
Ahad.
22. Predicting Nursing Care with K-Nearest Neighbors and Random Forest
Algorithms Jonathan Sturdivant, John Hendricks, and Gulustan Dogan.
23.
Future Prediction for Nurse Care Activities Using Deep Learning based
Multi-Label Classification Md. Golam Rasul, Wasim Akram, Sayeda Fatema Tuj
Zohura, Tanjila Alam Sathi, and Lutfun Nahar Lota.
24. A Classification
Technique based on Exploratory Data Analysis for Activity Recognition Riku
Shinohara, Huakun Liu, Monica Perusqu´Ia-Hern´Andez, Naoya Isoyama, Hideaki
Uchiyama, and Kiyoshi Kiyokawa/
25. Time Series Analysis of Care Records Data
for Nurse Activity Recognition in the Wild Md. Kabiruzzaman, Mohammad
Shidujaman, Shadril Hassan Shifat, Pritom Debnath, and Shahera Hossain.
26.
Summary of the Fourth Nurse Care Activity Recognition Challenge Predicting
Future Activities.
27. Defry Hamdhana, Christina Garcia, Nazmun Nahid, Haru
Kaneko, Sayeda Shamma Alia, Tahera Hossain, and Sozo Inoue
Md Atiqur Rahman Ahad, PhD, is Associate Professor at the University of East London, UK.

Sozo Inoue, PhD, is Professor at the Kyushu Institute of Technology, Japan.

Guillaume Lopez, PhD, is Professor at Aoyama Gakuin University, Japan.

Tahera Hossain, PhD, is Assistant Professor (Project) at Aoyama Gakuin University, Japan.