Muutke küpsiste eelistusi

E-raamat: Human-Centered Social Media Analytics

Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Mar-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319054919
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Mar-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319054919

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a timely and unique survey of next-generation social computational methodologies. The text explains the fundamentals of this field, and describes state-of-the-art methods for inferring social status, relationships, preferences, intentions, personalities, needs, and lifestyles from human information in unconstrained visual data. Topics and features: includes perspectives from an international and interdisciplinary selection of pre-eminent authorities; presents balanced coverage of both detailed theoretical analysis and real-world applications; examines social relationships in human-centered media for the development of socially-aware video, location-based, and multimedia applications; reviews techniques for recognizing the social roles played by people in an event, and for classifying human-object interaction activities; discusses the prediction and recognition of human attributes via social media analytics, including social relationships, facial age and beauty, and occupation.

Arvustused

Human-Centered Social Media Analytics focuses on the novel social computational methodologies that are being developed to investigate social media data. Scholars, both new and established, should consider reading to gain an understanding of the questions they should pursue and the challenges they must overcome as they strive to advance big data and social media analytics research. (Pratyush Bharati, Interfaces, Vol. 47 (3), May-June, 2017)

Part I Social Relationships in Human-Centered Media
1 Bridging Human-Centered Social Media Content Across Web Domains
3(18)
Suman Deb Roy
Tao Mei
Wenjun Zeng
2 Learning Social Relations from Videos: Features, Models, and Analytics
21(22)
Lei Ding
Alper Yilmaz
3 Community Understanding in Location-based Social Networks
43(32)
Yi-Liang Zhao
Qiang Cheng
Shuicheng Yan
Daqing Zhang
Tat-Seng Chua
4 Social Role Recognition for Human Event Understanding
75(20)
Vignesh Ramanathan
Bangpeng Yao
Li Fei-Fei
5 Integrating Randomization and Discrimination for Classifying Human-Object Interaction Activities
95(22)
Aditya Khosla
Bangpeng Yao
Li Fei-Fei
Part II Human Attributes in Social Media Analytics
6 Recognizing People in Social Context
117(16)
Gang Wang
Andrew Gallagher
Jiebo Luo
David Forsyth
7 Female Facial Beauty Attribute Recognition and Editing
133(16)
Jinjun Wang
Yihong Gong
Douglas Gray
8 Facial Age Estimation: A Data Representation Perspective
149(26)
Xin Geng
9 Identity and Kinship Relations in Group Pictures
175(16)
Ming Shao
Siyu Xia
Yun Fu
10 Recognizing Occupations Through Probabilistic Models: A Social View
191(16)
Ming Shao
Yun Fu
Index 207