Preface |
|
xix | |
1 Internet of Robotic Things: A New Architecture and Platform |
|
1 | (26) |
|
|
|
|
|
2 | (7) |
|
|
3 | (6) |
|
1.1.1.1 Achievability of the Proposed Architecture |
|
|
6 | (1) |
|
1.1.1.2 Qualities of IoRT Architecture |
|
|
6 | (2) |
|
1.1.1.3 Reasonable Existing Robots for IoRT Architecture |
|
|
8 | (1) |
|
|
9 | (11) |
|
1.2.1 Cloud Robotics Platforms |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.2.4 The Main Components of the Proposed Approach |
|
|
11 | (1) |
|
1.2.5 IoRT Platform Design |
|
|
12 | (3) |
|
1.2.6 Interconnection Design |
|
|
15 | (2) |
|
1.2.7 Research Methodology |
|
|
17 | (1) |
|
1.2.8 Advancement Process-Systems Thinking |
|
|
17 | (1) |
|
1.2.8.1 Development Process |
|
|
17 | (1) |
|
1.2.9 Trial Setup-to Confirm the Functionalities |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (6) |
2 Brain-Computer Interface Using Electroencephalographic Signals for the Internet of Robotic Things |
|
27 | (28) |
|
|
|
|
28 | (2) |
|
2.2 Electroencephalography Signal Acquisition Methods |
|
|
30 | (2) |
|
|
31 | (1) |
|
2.2.2 Non-Invasive Method |
|
|
32 | (1) |
|
2.3 Electroencephalography Signal-Based BCI |
|
|
32 | (8) |
|
2.3.1 Prefrontal Cortex in Controlling Concentration Strength |
|
|
33 | (1) |
|
2.3.2 Neurosky Mind-Wave Mobile |
|
|
34 | (3) |
|
2.3.2.1 Electroencephalography Signal Processing Devices |
|
|
34 | (3) |
|
2.3.3 Electromyography Signal Extraction of Features and Its Signal Classifications |
|
|
37 | (3) |
|
2.4 IoRT-Based Hardware for BCI |
|
|
40 | (1) |
|
2.5 Software Setup for IoRT |
|
|
40 | (2) |
|
2.6 Results and Discussions |
|
|
42 | (5) |
|
|
47 | (1) |
|
|
48 | (7) |
3 Automated Verification and Validation of IoRT Systems |
|
55 | (36) |
|
|
|
|
56 | (3) |
|
3.1.1 Automating V&V-An Important Key to Success |
|
|
58 | (1) |
|
3.2 Program Analysis of IoRT Applications |
|
|
59 | (2) |
|
3.2.1 Need for Program Analysis |
|
|
59 | (1) |
|
3.2.2 Aspects to Consider in Program Analysis of IoRT Systems |
|
|
59 | (2) |
|
3.3 Formal Verification of IoRT Systems |
|
|
61 | (12) |
|
3.3.1 Automated Model Checking |
|
|
61 | (1) |
|
3.3.2 The Model Checking Process |
|
|
62 | (7) |
|
|
65 | (1) |
|
|
66 | (1) |
|
3.3.2.3 SPIN Model Checker |
|
|
67 | (2) |
|
3.3.3 Automated Theorem Prover |
|
|
69 | (2) |
|
|
70 | (1) |
|
|
71 | (2) |
|
|
72 | (1) |
|
3.4 Validation of IoRT Systems |
|
|
73 | (7) |
|
3.4.1 IoRT Testing Methods |
|
|
79 | (1) |
|
3.4.2 Design of IoRT Test |
|
|
80 | (1) |
|
|
80 | (8) |
|
3.5.1 Use of Service Visualization |
|
|
82 | (1) |
|
3.5.2 Steps for Automated Validation of IoRT Systems |
|
|
82 | (2) |
|
3.5.3 Choice of Appropriate Tool for Automated Validation |
|
|
84 | (1) |
|
3.5.4 IoRT Systems Open Source Automated Validation Tools |
|
|
85 | (1) |
|
3.5.5 Some of Significant Open Source Test Automation Frameworks |
|
|
86 | (1) |
|
3.5.6 Finally IoRT Security Testing |
|
|
86 | (1) |
|
3.5.7 Prevalent Approaches for Security Validation |
|
|
87 | (1) |
|
3.5.8 IoRT Security Tools |
|
|
87 | (1) |
|
|
88 | (3) |
4 Light Fidelity (Li-Fi) Technology: The Future Man-Machine-Machine Interaction Medium |
|
91 | (22) |
|
|
|
|
92 | (2) |
|
|
94 | (1) |
|
|
94 | (4) |
|
4.2.1 An Overview on Man-to-Machine Interaction System |
|
|
95 | (1) |
|
4.2.2 Review on Machine to Machine (M2M) Interaction |
|
|
96 | (2) |
|
|
97 | (1) |
|
4.3 Light Fidelity Technology |
|
|
98 | (7) |
|
4.3.1 Modulation Techniques Supporting Li-Fi |
|
|
99 | (3) |
|
4.3.1.1 Single Carrier Modulation (SCM) |
|
|
100 | (1) |
|
4.3.1.2 Multi Carrier Modulation |
|
|
100 | (1) |
|
4.3.1.3 Li-Fi Specific Modulation |
|
|
101 | (1) |
|
4.3.2 Components of Li-Fi |
|
|
102 | (3) |
|
4.3.2.1 Light Emitting Diode (LED) |
|
|
102 | (1) |
|
|
103 | (1) |
|
4.3.2.3 Transmitter Block |
|
|
103 | (1) |
|
|
104 | (1) |
|
4.4 Li-Fi Applications in Real Word Scenario |
|
|
105 | (6) |
|
4.4.1 Indoor Navigation System for Blind People |
|
|
105 | (1) |
|
4.4.2 Vehicle to Vehicle Communication |
|
|
106 | (1) |
|
|
107 | (2) |
|
4.4.4 Li-Fi Applications for Pharmacies and the Pharmaceutical Industry |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (2) |
5 Healthcare Management-Predictive Analysis (IoRT) |
|
113 | (24) |
|
|
|
|
|
114 | (2) |
|
5.1.1 Naive Bayes Classifier Prediction for SPAM |
|
|
115 | (1) |
|
5.1.2 Internet of Robotic Things (IoRT) |
|
|
115 | (1) |
|
|
116 | (1) |
|
5.3 Fuzzy Time Interval Sequential Pattern (FTISPAM) |
|
|
117 | (7) |
|
5.3.1 FTI SPAM Using GA Algorithm |
|
|
118 | (3) |
|
5.3.1.1 Chromosome Generation |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
5.3.2 Patterns Matching Using SCI |
|
|
121 | (1) |
|
5.3.3 Pattern Classification Based on SCI Value |
|
|
122 | (1) |
|
5.3.4 Significant Pattern Evaluation |
|
|
123 | (1) |
|
5.4 Detection of Congestive Heart Failure Using Automatic Classifier |
|
|
124 | (6) |
|
5.4.1 Analyzing the Dataset |
|
|
125 | (1) |
|
|
126 | (2) |
|
5.4.2.1 Long-Term HRV Measures |
|
|
127 | (1) |
|
5.4.2.2 Attribute Selection |
|
|
128 | (1) |
|
5.4.3 Automatic Classifier-Belief Network |
|
|
128 | (2) |
|
5.5 Experimental Analysis |
|
|
130 | (2) |
|
|
132 | (2) |
|
|
134 | (3) |
6 Multimodal Context-Sensitive Human Communication Interaction System Using Artificial Intelligence-Based Human-Centered Computing |
|
137 | (26) |
|
|
|
|
|
138 | (3) |
|
|
141 | (4) |
|
|
145 | (10) |
|
|
145 | (1) |
|
6.3.2 Dimensionality Reduction |
|
|
146 | (1) |
|
6.3.3 Principal Component Analysis |
|
|
147 | (1) |
|
6.3.4 Reduce the Number of Dimensions |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (2) |
|
6.3.6.1 Convolution Layers |
|
|
149 | (1) |
|
|
150 | (1) |
|
6.3.6.3 Pooling/Subsampling Layers |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
6.3.7.1 Fully Connected Layers |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
6.3.9 Weighted Combination of Networks |
|
|
153 | (2) |
|
|
155 | (4) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
6.4.4 A Predictive Positive Value (PPV) |
|
|
156 | (1) |
|
6.4.5 Negative Predictive Value (NPV) |
|
|
156 | (3) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (3) |
7 AI, Planning and Control Algorithms for IoRT Systems |
|
163 | (30) |
|
|
|
|
A. Josephin Arockia Dhivya |
|
|
|
164 | (3) |
|
7.2 General Architecture of IoRT |
|
|
167 | (3) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
7.2.4 Infrastructure Layer |
|
|
168 | (1) |
|
|
169 | (1) |
|
7.3 Artificial Intelligence in IoRT Systems |
|
|
170 | (10) |
|
7.3.1 Technologies of Robotic Things |
|
|
170 | (2) |
|
7.3.2 Artificial Intelligence in IoRT |
|
|
172 | (8) |
|
7.4 Control Algorithms and Procedures for IoRT Systems |
|
|
180 | (7) |
|
7.4.1 Adaptation of IoRT Technologies |
|
|
183 | (3) |
|
7.4.2 Multi-Robotic Technologies |
|
|
186 | (1) |
|
7.5 Application of IoRT in Different Fields |
|
|
187 | (3) |
|
|
190 | (3) |
8 Enhancements in Communication Protocols That Powered IoRT |
|
193 | (26) |
|
|
|
|
194 | (1) |
|
8.2 IoRT Communication Architecture |
|
|
194 | (4) |
|
|
196 | (1) |
|
8.2.2 Wireless Link Layer |
|
|
197 | (1) |
|
|
197 | (1) |
|
8.2.4 Communication Layer |
|
|
198 | (1) |
|
|
198 | (1) |
|
8.3 Bridging Robotics and IoT |
|
|
198 | (2) |
|
8.4 Robot as a Node in IoT |
|
|
200 | (6) |
|
8.4.1 Enhancements in Low Power WPANs |
|
|
200 | (3) |
|
8.4.1.1 Enhancements in IEEE 802.15.4 |
|
|
200 | (1) |
|
8.4.1.2 Enhancements in Bluetooth |
|
|
201 | (1) |
|
8.4.1.3 Network Layer Protocols |
|
|
202 | (1) |
|
8.4.2 Enhancements in Low Power WLANs |
|
|
203 | (1) |
|
8.4.2.1 Enhancements in IEEE 802.11 |
|
|
203 | (1) |
|
8.4.3 Enhancements in Low Power WWANs |
|
|
204 | (2) |
|
|
205 | (1) |
|
|
205 | (1) |
|
8.5 Robots as Edge Device in IoT |
|
|
206 | (3) |
|
8.5.1 Constrained RESTful Environments (CoRE) |
|
|
206 | (1) |
|
8.5.2 The Constrained Application Protocol (CoAP) |
|
|
207 | (1) |
|
|
207 | (1) |
|
8.5.3 The MQTT-SN Protocol |
|
|
207 | (1) |
|
8.5.4 The Data Distribution Service (DDS) |
|
|
208 | (1) |
|
|
209 | (1) |
|
8.6 Challenges and Research Solutions |
|
|
209 | (1) |
|
8.7 Open Platforms for IoRT Applications |
|
|
210 | (2) |
|
8.8 Industrial Drive for Interoperability |
|
|
212 | (2) |
|
8.8.1 The Zigbee Alliance |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (4) |
9 Real Time Hazardous Gas Classification and Management System Using Artificial Neural Networks |
|
219 | (26) |
|
|
|
|
|
|
220 | (1) |
|
|
220 | (1) |
|
|
221 | (2) |
|
9.4 Hardware & Software Requirements |
|
|
223 | (9) |
|
9.4.1 Hardware Requirements |
|
|
223 | (9) |
|
9.4.1.1 Gas Sensors Employed in Hazardous Detection |
|
|
223 | (3) |
|
9.4.1.2 NI Wireless Sensor Node 3202 |
|
|
226 | (2) |
|
9.4.1.3 NI WSN gateway (NI 9795) |
|
|
228 | (1) |
|
9.4.1.4 COMPACT RIO (NI-9082) |
|
|
229 | (3) |
|
|
232 | (8) |
|
9.5.1 Data Set Preparation |
|
|
233 | (3) |
|
9.5.2 Artificial Neural Network Model Creation |
|
|
236 | (4) |
|
9.6 Results and Discussion |
|
|
240 | (3) |
|
9.7 Conclusion and Future Work |
|
|
243 | (1) |
|
|
244 | (1) |
10 Hierarchical Elitism GSO Algorithm For Pattern Recognition |
|
245 | (18) |
|
|
|
|
246 | (1) |
|
|
247 | (1) |
|
|
248 | (7) |
|
10.3.1 Additive Kuan Speckle Noise Filtering Model |
|
|
249 | (2) |
|
10.3.2 Hierarchical Elitism Gene GSO of MNN in Pattern Recognition |
|
|
251 | (4) |
|
|
255 | (1) |
|
|
255 | (5) |
|
10.5.1 Scenario 1: Computational Time |
|
|
256 | (1) |
|
10.5.2 Scenario 2: Computational Complexity |
|
|
257 | (1) |
|
10.5.3 Scenario 3: Pattern Recognition Accuracy |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
260 | (3) |
11 Multidimensional Survey of Machine Learning Application in IoT (Internet of Things) |
|
263 | (38) |
|
|
|
11.1 Machine Learning-An Introduction |
|
|
264 | (3) |
|
11.1.1 Classification of Machine Learning |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
268 | (2) |
|
|
268 | (2) |
|
|
270 | (1) |
|
11.5 Different Machine Learning Algorithm |
|
|
271 | (2) |
|
11.5.1 Bayesian Measurements |
|
|
271 | (1) |
|
11.5.2 K-Nearest Neighbors (k-NN) |
|
|
272 | (1) |
|
|
272 | (1) |
|
11.5.4 Decision Tree (DT) |
|
|
272 | (1) |
|
11.5.5 Principal Component Analysis (PCA) t |
|
|
273 | (1) |
|
11.5.6 K-Mean Calculations |
|
|
273 | (1) |
|
|
273 | (1) |
|
11.6 Internet of Things in Different Frameworks |
|
|
273 | (3) |
|
11.6.1 Computing Framework |
|
|
274 | (2) |
|
|
274 | (1) |
|
|
275 | (1) |
|
11.6.1.3 Distributed Computing |
|
|
275 | (1) |
|
11.6.1.4 Circulated Figuring |
|
|
276 | (1) |
|
|
276 | (3) |
|
|
277 | (1) |
|
11.7.1.1 Insightful Vitality |
|
|
277 | (1) |
|
11.7.1.2 Brilliant Portability |
|
|
277 | (1) |
|
|
278 | (1) |
|
11.7.2 Attributes of the Smart City |
|
|
278 | (1) |
|
11.8 Smart Transportation |
|
|
279 | (6) |
|
11.8.1 Machine Learning and IoT in Smart Transportation |
|
|
280 | (3) |
|
|
283 | (1) |
|
11.8.3 Decision Structures |
|
|
284 | (1) |
|
11.9 Application of Research |
|
|
285 | (5) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
11.9.4 Application in Industry |
|
|
287 | (3) |
|
11.10 Machine Learning for IoT Security |
|
|
290 | (4) |
|
11.10.1 Used Machine Learning Algorithms |
|
|
291 | (2) |
|
11.10.2 Intrusion Detection |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (6) |
12 IoT-Based Bias Analysis in Acoustic Feedback Using Time-Variant Adaptive Algorithm in Hearing Aids |
|
301 | (36) |
|
|
|
|
302 | (1) |
|
12.2 Existence of Acoustic Feedback |
|
|
303 | (1) |
|
12.2.1 Causes of Acoustic Feedback |
|
|
303 | (1) |
|
12.2.2 Amplification of Feedback Process |
|
|
304 | (1) |
|
12.3 Analysis of Acoustic Feedback |
|
|
304 | (6) |
|
12.3.1 Frequency Analysis Using Impulse Response |
|
|
305 | (1) |
|
12.3.2 Feedback Analysis Using Phase Difference |
|
|
306 | (4) |
|
12.4 Filtering of Signals |
|
|
310 | (10) |
|
|
310 | (1) |
|
|
311 | (1) |
|
12.4.2.1 Order of Adaptive Filters |
|
|
311 | (1) |
|
12.4.2.2 Filter Coefficients in Adaptive Filters |
|
|
311 | (1) |
|
12.4.3 Adaptive Feedback Cancellation |
|
|
312 | (3) |
|
12.4.3.1 Non-Continuous Adaptation |
|
|
312 | (2) |
|
12.4.3.2 Continuous Adaptation |
|
|
314 | (1) |
|
12.4.4 Estimation of Acoustic Feedback |
|
|
315 | (2) |
|
12.4.5 Analysis of Acoustic Feedback Signal |
|
|
317 | (3) |
|
12.4.5.1 Forward Path of the Signal |
|
|
317 | (1) |
|
12.4.5.2 Feedback Path of the Signal |
|
|
317 | (2) |
|
12.4.5.3 Bias Identification |
|
|
319 | (1) |
|
|
320 | (5) |
|
12.5.1 Step-Size Algorithms |
|
|
321 | (4) |
|
|
322 | (1) |
|
12.5.1.2 Variable Step-Size |
|
|
323 | (2) |
|
|
325 | (3) |
|
12.6.1 Training of Adaptive Filter for Removal of Acoustic Feedback |
|
|
325 | (1) |
|
12.6.2 Testing of Adaptive Filter |
|
|
326 | (13) |
|
12.6.2.1 Subjective and Objective Evaluation Using KEMAR |
|
|
326 | (1) |
|
12.6.2.2 Experimental Setup Using Manikin Channel |
|
|
327 | (1) |
|
12.7 Performance Evaluation |
|
|
328 | (5) |
|
|
333 | (1) |
|
|
334 | (3) |
13 Internet of Things Platform for Smart Farming |
|
337 | (34) |
|
|
|
|
|
|
337 | (1) |
|
|
338 | (1) |
|
13.3 Electronic Terminologies |
|
|
339 | (2) |
|
13.3.1 Input and Output Devices |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
340 | (1) |
|
13.3.4 Communication Protocols |
|
|
340 | (1) |
|
|
340 | (1) |
|
|
340 | (1) |
|
|
341 | (1) |
|
13.4 IoT Cloud Architecture |
|
|
341 | (2) |
|
13.4.1 Communication From User to Cloud Platform |
|
|
342 | (1) |
|
13.4.2 Communication From Cloud Platform To IoT Device |
|
|
342 | (1) |
|
|
343 | (7) |
|
13.5.1 Real-Time Analytics |
|
|
343 | (1) |
|
13.5.1.1 Understanding Driving Styles |
|
|
343 | (1) |
|
13.5.1.2 Creating Driver Segmentation |
|
|
344 | (1) |
|
13.5.1.3 Identifying Risky Neighbors |
|
|
344 | (1) |
|
13.5.1.4 Creating Risk Profiles |
|
|
344 | (1) |
|
13.5.1.5 Comparing Microsegments |
|
|
344 | (1) |
|
|
344 | (2) |
|
13.5.2.1 Understanding the Farm |
|
|
345 | (1) |
|
13.5.2.2 Creating Farm Segmentation |
|
|
345 | (1) |
|
13.5.2.3 Identifying Risky Factors |
|
|
346 | (1) |
|
13.5.2.4 Creating Risk Profiles |
|
|
346 | (1) |
|
13.5.2.5 Comparing Microsegments |
|
|
346 | (1) |
|
|
346 | (3) |
|
13.5.3.1 Temperature Sensor |
|
|
347 | (1) |
|
13.5.3.2 Water Quality Sensor |
|
|
347 | (1) |
|
|
347 | (1) |
|
13.5.3.4 Light Dependent Resistor |
|
|
347 | (2) |
|
|
349 | (1) |
|
13.6 IoT-Based Crop Management System |
|
|
350 | (17) |
|
13.6.1 Temperature and Humidity Management System |
|
|
350 | (11) |
|
|
351 | (2) |
|
|
353 | (3) |
|
|
356 | (5) |
|
13.6.2 Water Quality Monitoring System |
|
|
361 | (3) |
|
13.6.2.1 Dissolved Oxygen Monitoring System |
|
|
361 | (2) |
|
13.6.2.2 pH Monitoring System |
|
|
363 | (1) |
|
13.6.3 Light Intensity Monitoring System |
|
|
364 | (8) |
|
|
365 | (1) |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
369 | (2) |
14 Scrutinizing the Level of Awareness on Green Computing Practices in Combating Covid-19 at Institute of Health Science-Gaborone |
|
371 | (30) |
|
|
|
|
372 | (9) |
|
14.1.1 Institute of Health Science-Gaborone |
|
|
373 | (1) |
|
14.1.2 Research Objectives |
|
|
374 | (1) |
|
|
374 | (1) |
|
|
375 | (1) |
|
14.1.5 The Necessity of Green Computing in Combating Covid-19 |
|
|
376 | (3) |
|
14.1.6 Green Computing Awareness |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
14.2 Research Methodology |
|
|
381 | (2) |
|
|
382 | (1) |
|
|
382 | (1) |
|
14.2.3 Questionnaire as a Data Collection Instrument |
|
|
383 | (1) |
|
14.2.4 Validity and Reliability |
|
|
383 | (1) |
|
14.3 Analysis of Data and Presentation |
|
|
383 | (10) |
|
14.3.1 Demographics: Gender and Age |
|
|
384 | (2) |
|
14.3.2 How Effective is Green Computing Policies in Combating Covid-19 at Institute of Health Science-Gaborone? |
|
|
386 | (2) |
|
14.3.3 What are Green Computing Practices Among Users at Gaborone Institute of Health Science? |
|
|
388 | (1) |
|
14.3.4 What is the Role of Green Computing Training in Combating Covid-19 at Institute of Health Science-Gaborone? |
|
|
388 | (2) |
|
14.3.5 What is the Likelihood of Threats Associated With a Lack of Awareness on Green Computing Practices While Combating Covid-19? |
|
|
390 | (1) |
|
14.3.6 What is the Level of User Conduct, Awareness and Attitude With Regard to Awareness on Green Computing Practices at Institute of Health Science-Gaborone? |
|
|
391 | (2) |
|
|
393 | (1) |
|
14.4.1 Green Computing Policy |
|
|
393 | (1) |
|
|
394 | (1) |
|
14.4.3 Green Computing Awareness Training |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
395 | (6) |
15 Detailed Analysis of Medical IoT Using Wireless Body Sensor Network and Application of IoT in Healthcare |
|
401 | (34) |
|
|
|
|
402 | (1) |
|
|
403 | (2) |
|
|
405 | (2) |
|
|
405 | (1) |
|
15.3.2 Internet of Things (IoT): Data Flow |
|
|
406 | (1) |
|
15.3.3 Structure of IoT-Enabling Technologies |
|
|
406 | (1) |
|
|
407 | (1) |
|
15.5 IoT in Healthcare of Human Beings |
|
|
407 | (2) |
|
15.5.1 Remote Healthcare-Telemedicine |
|
|
408 | (1) |
|
15.5.2 Telemedicine System-Overview |
|
|
408 | (1) |
|
15.6 Telemedicine Through a Speech-Based Query System |
|
|
409 | (3) |
|
15.6.1 Outpatient Monitoring |
|
|
410 | (1) |
|
15.6.2 Telemedicine Umbrella Service |
|
|
410 | (1) |
|
15.6.3 Advantages of the Telemedicine Service |
|
|
411 | (1) |
|
15.6.4 Some Examples of IoT in the Health Sector |
|
|
411 | (1) |
|
|
412 | (1) |
|
|
412 | (8) |
|
15.8.1 Classification of Sensors |
|
|
413 | (2) |
|
15.8.2 Commonly Used Sensors in BSNs |
|
|
415 | (5) |
|
|
417 | (1) |
|
|
418 | (1) |
|
15.8.2.3 Pressure Sensors |
|
|
419 | (1) |
|
15.8.2.4 Respiration Sensors |
|
|
420 | (1) |
|
15.9 Design of Sensor Nodes |
|
|
420 | (3) |
|
|
421 | (1) |
|
|
422 | (1) |
|
15.9.3 Reduction of Sensor Nodes |
|
|
422 | (1) |
|
15.10 Applications of BSNs |
|
|
423 | (1) |
|
|
423 | (1) |
|
|
424 | (4) |
|
15.12.1 From WBANs to BBNs |
|
|
425 | (1) |
|
|
425 | (1) |
|
|
426 | (1) |
|
|
427 | (1) |
|
|
427 | (1) |
|
15.13 Body-to-Body Network Concept |
|
|
428 | (1) |
|
|
429 | (1) |
|
|
430 | (5) |
16 DCMM: A Data Capture and Risk Management for Wireless Sensing Using IoT Platform |
|
435 | (28) |
|
|
|
|
|
|
436 | (2) |
|
|
438 | (1) |
|
16.2.1 Internet of Things |
|
|
438 | (1) |
|
16.2.2 Middleware Data Acquisition |
|
|
438 | (1) |
|
16.2.3 Context Acquisition |
|
|
439 | (1) |
|
|
439 | (7) |
|
16.3.1 Proposed Architecture |
|
|
439 | (7) |
|
16.3.1.1 Protocol Adaption |
|
|
441 | (2) |
|
16.3.1.2 Device Management |
|
|
443 | (2) |
|
|
445 | (1) |
|
|
446 | (8) |
|
16.4.1 Requirement and Functionality |
|
|
446 | (2) |
|
|
446 | (1) |
|
|
447 | (1) |
|
16.4.2 Adopted Technologies |
|
|
448 | (4) |
|
16.4.2.1 Middleware Software |
|
|
448 | (1) |
|
16.4.2.2 Usability Dependency |
|
|
449 | (1) |
|
16.4.2.3 Sensor Node Software |
|
|
449 | (1) |
|
16.4.2.4 Hardware Technology |
|
|
450 | (1) |
|
|
451 | (1) |
|
16.4.3 Details of IoT Hub |
|
|
452 | (2) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
453 | (1) |
|
|
454 | (1) |
|
16.5 Results and Discussions |
|
|
454 | (6) |
|
|
460 | (1) |
|
|
461 | (2) |
Index |
|
463 | |