Muutke küpsiste eelistusi

E-raamat: Human-Robot Interaction in Social Robotics

(ATR Intelligent Robotics and Communication Laboratories, Kyoto, Japan), (Osaka University, Japan)
  • Formaat: 372 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781466506985
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 100,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 372 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781466506985
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Kanda, a researcher at a Kyoto intelligent and robotics and communication company, and Ishiguro (adaptive machine systems, Osaka U.) explore the new field of designing robots to interact with humans in the environment. They cover the network robot approach to interactions, observing people's reaction in field tests, users' attitude and expectations, modeling natural behaviors for human-like interaction with robots, a networked robot approach to sensing systems, shared autonomy and teleoperation, and learning and adaptation. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

Human–Robot Interaction in Social Robotics explores important issues in designing a robot system that works with people in everyday environments. Edited by leading figures in the field of social robotics, it draws on contributions by researchers working on the Robovie project at the ATR Intelligent Robotics and Communication Laboratories, a world leader in humanoid interactive robotics. The book brings together, in one volume, technical and empirical research that was previously scattered throughout the literature.

Taking a networked robot approach, the book examines how robots work in cooperation with ubiquitous sensors and people over telecommunication networks. It considers the use of social robots in daily life, grounding the work in field studies conducted at a school, train station, shopping mall, and science museum. Critical in the development of network robots, these usability studies allow researchers to discover real issues that need to be solved and to understand what kinds of services are possible.

The book tackles key areas where development is needed, namely, in sensor networks for tracking humans and robots, humanoids that can work in everyday environments, and functions for interacting with people. It introduces a sensor network developed by the authors and discusses innovations in the Robovie humanoid, including several interactive behaviors and design policies.

Exploring how humans interact with robots in daily life settings, this book offers valuable insight into how robots may be used in the future. The combination of engineering, empirical, and field studies provides readers with rich information to guide in developing practical interactive robots.

About the Authors xvii
Preface xix
1 Introduction to Network Robot Approach for Human-Robot Interaction
1(8)
1.1 From Navigation and Manipulation to Human-Robot Introduction
1(4)
1.2 Interactive Robots
5(3)
1.3 Network Robots
8(1)
2 Field Tests--- Observing People's Reaction
9(66)
2.1 Introduction
9(1)
2.2 Interactive Humanoid Robots for a Science Museum
10(21)
Masahiro Shiomi
Takayuki Kanda
Hiroshi Ishiguro
Norihiro Hagita
Abstract
10(1)
2.2.1 Introduction
11(1)
2.2.2 Related Works
12(1)
2.2.3 The Osaka Science Museum
13(1)
2.2.3.1 General Settings
13(1)
2.2.3.2 Our Experimental Settings
13(1)
2.2.4 System Configuration
14(1)
2.2.4.1 Database
15(1)
2.2.4.2 Embedded Ubiquitous Sensors in an Environment
15(1)
2.2.4.3 Humanoid Robots
16(2)
2.2.5 Robot Behavior
18(1)
2.2.5.1 Locomotive Robot
18(1)
2.2.5.2 Robots That Talk with Each Other
18(5)
2.2.5.3 A Robot Saying Goodbye
23(1)
2.2.6 Experiment
23(1)
2.2.6.1 A 2-Month Exhibition
23(1)
2.2.6.2 Results of the 2-Month Experiment
23(3)
2.2.6.3 Experiments on the Behavior of Robots
26(1)
2.2.6.4 Results of Robots Behavior
27(1)
2.2.7 Discussion and Conclusion
28(1)
2.2.7.1 Contributions
28(1)
2.2.7.2 A Perspective on Autonomy for a Communication Robot in Daily Life
28(2)
Acknowledgments
30(1)
References
30(1)
2.3 Humanoid Robots as a Passive-Social Medium--- A Field Experiment at a Train Station
31(21)
Kotaro Hayashi
Daisuke Sakamoto
Takayuki Kanda
Masahiro Shiomi
Satoshi Koizumi
Hiroshi Ishiguro
Tsukasa Ogasawara
Norihiro Hagita
Abstract
31(1)
2.3.1 Introduction
32(2)
2.3.2 Multi-robot Communication System
34(1)
2.3.2.1 Design Policy
35(1)
2.3.2.2 Humanoid Robot
35(1)
2.3.2.3 Sensor
36(1)
2.3.2.4 Scenario-Controlling System
36(1)
2.3.2.5 Example of a Script
37(1)
2.3.3 Experiment
38(1)
2.3.3.1 Method
38(1)
2.3.3.2 Participants
38(1)
2.3.3.3 Conditions
39(2)
2.3.3.4 Content of Scenarios
41(1)
2.3.3.5 Measurement
41(4)
2.3.3.6 Hypotheses
45(1)
2.3.3.7 Results
45(3)
2.3.4 Overview
48(1)
2.3.4.1 Contribution to HRI Research
48(1)
2.3.4.2 Contribution to Robot Design as a Medium
48(1)
2.3.4.3 Effects of Robots as Passive-Social Medium
49(1)
2.3.4.4 Novelty Effect
49(1)
2.3.4.5 Limitations
50(1)
2.3.5 Conclusion
50(1)
Acknowledgments
51(1)
References
51(1)
2.4 An Affective Guide Robot in a Shopping Mall
52(23)
Takayuki Kanda
Masahiro Shiomi
Zenta Miyashita
Hiroshi Ishiguro
Norihiro Hagita
Abstract
52(1)
2.4.1 Introduction
53(1)
2.4.2 Design
54(1)
2.4.3 Contemplating Robot Roles
54(1)
2.4.3.1 Role 1: Guiding
55(1)
2.4.3.2 Role 2: Building Rapport
56(1)
2.4.3.3 Role 3: Advertisements
56(1)
2.4.4 System Design
56(2)
2.4.5 Behavior Design
58(1)
2.4.5.1 General Design
58(1)
2.4.5.2 Guiding Behavior
58(1)
2.4.5.3 Building Rapport Behavior
59(1)
2.4.5.4 Behavior for Advertisements
59(1)
2.4.6 System Configuration
60(1)
2.4.7 Autonomous System
60(1)
2.4.7.1 Robovie
60(1)
2.4.7.2 Person Identification
61(1)
2.4.7.3 Position Estimation
62(1)
2.4.7.4 Behavior and Episode Rules
62(1)
2.4.7.5 Nonverbal Behaviors
63(1)
2.4.8 Operator's Roles
63(1)
2.4.8.1 Substitute of Speech Recognition
64(1)
2.4.8.2 Supervisor of Behavior Selector
64(1)
2.4.8.3 Knowledge Provider
64(1)
2.4.9 Conversational Fillers
65(1)
2.4.10 Field Trial
65(1)
2.4.10.1 Procedure
65(1)
2.4.11 Results
65(1)
2.4.11.1 Overall Transition of Interactions
65(1)
2.4.11.2 Perception of Participants
66(3)
2.4.11.3 Comparison with an Information Display
69(1)
2.4.11.4 Integrated Analysis
70(1)
2.4.12 Discussion
71(1)
2.4.12.1 Degree of Operator Involvement
71(1)
2.4.13 Conclusion
72(1)
Acknowledgments
73(1)
References
73(2)
3 Users' Attitude and Expectations
75(26)
3.1 Introduction
75(1)
Reference
76(1)
3.2 Is Interaction with Teleoperated Robots Less Enjoyable?
76(12)
Fumitaka Yamaoka
Takayuki Kanda
Hiroshi Ishiguro
Norihiro Hagita
Abstract
76(1)
3.2.1 Introduction
77(1)
3.2.2 Experimental System
77(1)
3.2.3 Experiment
78(2)
3.2.3.1 Participants and Environment
80(1)
3.2.3.2 Procedure
80(2)
3.2.3.3 Conditions
82(1)
3.2.3.4 Measures
83(1)
3.2.4 Results
83(1)
3.2.4.1 Does Prior Knowledge of Operator's Presence Vary Impressions?
83(1)
3.2.4.2 Participants Affected by Prior Knowledge of Operator's Presence
84(3)
3.2.5 Conclusion
87(1)
Acknowledgments
87(1)
References
87(1)
3.3 Hesitancy in Interacting with Robots--- Anxiety and Negative Attitudes
88(13)
Tatsuya Nomura
Takayuki Kanda
Tomohiro Suzuki
Kensuke Kato
Abstract
88(1)
3.3.1 Introduction
89(1)
3.3.2 Psychological Scales for Human-Robot Interaction
89(1)
3.3.2.1 Background: Attitudes and Anxiety
90(1)
3.3.2.2 Negative Attitudes toward Robots Scale (NARS)
90(1)
3.3.2.3 Robot Anxiety Scale (RAS)
90(1)
3.3.3 Experiment
91(1)
3.3.3.1 Participants and Settings
91(1)
3.3.3.2 Procedures
91(1)
3.3.3.3 Measurement
92(1)
3.3.4 Results
93(1)
3.3.4.1 Measurement Result
93(3)
3.3.4.2 Prediction of Communication Avoidance Behavior from Anxiety and Negative Attitudes
96(1)
3.3.5 Conclusion
97(1)
Acknowledgments
98(1)
References
98(2)
Appendix---Items in the NARS [ 15] and RAS [ 16]
100(1)
4 Modeling Natural Behaviors for Human-Like Interaction with Robots
101(56)
4.1 Introduction
101(3)
References
103(1)
4.2 A Model of Natural Deictic Interaction
104(16)
Osamu Sugiyama
Takayuki Kanda
Michita Imai
Hiroshi Ishiguro
Norihiro Hagita
4.2.1 Introduction
104(1)
4.2.2 Related Works
105(1)
4.2.3 Model of Deictic interaction
105(3)
4.2.4 Development of a Communication Robot Capable of Natural Deictic Interaction
108(5)
4.2.5 Evaluation Experiment
113(1)
4.2.5.1 Method
113(1)
4.2.5.2 Procedures
114(1)
4.2.5.3 Measurement
115(1)
4.2.5.4 Results
116(2)
4.2.5.5 Summary
118(1)
4.2.5.6 Limitations
119(1)
4.2.6 Conclusion
119(1)
Acknowledgments
119(1)
References
120(1)
4.3 A Model of Proximic Behavior for Being Together While Sharing Attention
120(20)
Fumitaka Yamaoka
Takayuki Kanda
Hiroshi Ishiguro
Norihiro Hagita
4.3.1 Introduction
121(1)
4.3.2 Related Work
121(1)
4.3.3 Modeling of Implicit Cue for Attention-Shifting
122(1)
4.3.3.1 Definition of "Implicit" Attention-Shifting
122(1)
4.3.3.2 Overview of Modeling
123(1)
4.3.3.3 Estimating Attention from Implicit Cues
124(1)
4.3.3.4 Detecting Partner's Attention-Shift from Implicit Cues
124(1)
4.3.3.5 Predicting Partner's Next Attention from Implicit Cues
124(3)
4.3.4 Modeling of Spatial Position
127(1)
4.3.4.1 Constraint of Proximity
127(1)
4.3.4.2 Body Orientation
127(1)
4.3.4.3 Constraint of Partner's Field of View
128(1)
4.3.4.4 Constraint of Robot's Field of View
129(2)
4.3.5 Position Model for a Presenter Robot
131(1)
4.3.6 Implementation
132(1)
4.3.6.1 System Configuration
132(1)
4.3.6.2 Robot Controller
133(1)
4.3.7 Evaluation Experiment
134(1)
4.3.7.1 Conditions
134(1)
4.3.7.2 Procedure
134(2)
4.3.7.3 Measures
136(1)
4.3.7.4 Hypothesis and Predictions
136(1)
4.3.8 Results
137(1)
4.3.8.1 Verification of Prediction 1
137(1)
4.3.8.2 Verification of Prediction 2
138(1)
4.3.8.3 Verification of Prediction 3
138(1)
4.3.9 Limitations
139(1)
4.3.10 Conclusions
139(1)
References
139(1)
4.4 A Model for Natural and Comprehensive Direction Giving
140(17)
Yusuke Okuno
Takayuki Kanda
Michita Imai
Hiroshi Ishiguro
Norihiro Hagita
4.4.1 Introduction
141(1)
4.4.2 Related Works
141(1)
4.4.2.1 Utterance
141(1)
4.4.2.2 Gesture
141(1)
4.4.2.3 Timing
142(1)
4.4.3 Modeling Robot's Direction Giving
142(1)
4.4.3.1 Utterance
143(2)
4.4.3.2 Gesture
145(1)
4.4.3.3 Timing
146(3)
4.4.4 Evaluation Experiment
149(1)
4.4.4.1 Hypothesis and Predictions
149(1)
4.4.4.2 Method
149(2)
4.4.5 Results
151(1)
4.4.5.1 Verification of Predictions
151(1)
4.4.5.2 Comparison of Naturalness Ratings
152(1)
4.4.6 Limitations
153(1)
4.4.7 Conclusion
154(1)
Acknowledgments
154(1)
References
154(3)
5 Sensing Systems: Networked Robot Approach
157(98)
5.1 Introduction
157(1)
5.2 Laser-Based Tracking of Human Position and Orientation Using Parametric Shape Modeling
158(25)
Dylan F. Glas
Takahiro Miyashita
Hiroshi Ishiguro
Norihiro Hagita
Abstract
159(1)
5.2.1 Introduction
159(1)
5.2.2 Related Work
160(1)
5.2.3 Position Tracking
161(1)
5.2.3.1 Detection and Association
162(1)
5.2.3.2 Particle Filtering
162(1)
5.2.3.3 State Model
163(1)
5.2.3.4 Motion Model
163(1)
5.2.3.5 Likelihood Model
163(3)
5.2.4 Orientation Estimation
166(1)
5.2.4.1 Theoretical Shape Model
166(2)
5.2.4.2 Radial Data Representation
168(1)
5.2.4.3 Empirical Distance Distribution Model
168(2)
5.2.4.4 First-Pass θ Determination
170(1)
5.2.4.5 Second-Pass θ Determination
171(2)
5.2.4.6 Correction of Reversals
173(1)
5.2.5 Laboratory Performance Analysis
173(1)
5.2.5.1 Setup and Procedure
173(2)
5.2.5.2 Results
175(1)
5.2.6 Natural Walking Experiment
175(1)
5.2.6.1 Setup and Procedure
176(1)
5.2.6.2 Results
176(4)
5.2.7 Discussion
180(1)
5.2.7.1 Performance Tuning
180(1)
5.2.7.2 Real-Time Operation
180(1)
5.2.7.3 Future Work
181(1)
5.2.8 Conclusions
182(1)
References
182(1)
5.3 Super-Flexible Skin Sensors Embedded on the Whole Body, Self-Organizing Based on Haptic Interactions
183(20)
Tomoyuki Noda
Takahiro Miyashita
Hiroshi Ishiguro
Norihiro Hagita
Abstract
183(1)
5.3.1 Introduction
184(2)
5.3.2 Background and Comparisons
186(1)
5.3.3 Self-Organizing Tactile Sensor Method to Decide Sensor Boundaries
187(1)
5.3.3.1 Basic Idea
187(1)
5.3.3.2 Feature Space
188(1)
5.3.3.3 Overview
188(1)
5.3.3.4 CLAFIC Method
189(1)
5.3.3.5 Learning Sensor Banks
190(1)
5.3.3.6 Somatosensory Map
191(1)
5.3.4 Experiments
191(1)
5.3.4.1 Hardware
191(2)
5.3.4.2 Field Experiment
193(2)
5.3.4.3 Construction of the Haptic Interaction Database
195(1)
5.3.5 Results
196(5)
5.3.6 Discussion
201(1)
5.3.7 Conclusions
201(1)
Acknowledgments
202(1)
References
202(1)
5.4 Integrating Passive RFID tag and Person Tracking for Social Interaction in Daily Life
203(20)
Kenta Nohara
Tajika Taichi
Masahiro Shiomi
Takayuki Kanda
Hiroshi Ishiguro
Norihiro Hagita
Abstract
204(1)
5.4.1 Introduction
204(2)
5.4.2 Person Tracking and Identification
206(1)
5.4.2.1 Previous Methods
206(1)
5.4.3 Proposed Method
207(2)
5.4.4 System Configuration
209(1)
5.4.4.1 System Overview
209(1)
5.4.4.2 Humanoid Robot
209(2)
5.4.4.3 Floor Sensor
211(1)
5.4.5 Hypotheses-Based Mechanism
211(1)
5.4.5.1 Making a Hypotheses Mechanism
212(5)
5.4.5.2 Verifying Hypotheses Mechanism
217(1)
5.4.6 Performance Evaluation
217(1)
5.4.6.1 Settings
217(1)
5.4.6.2 Result
218(1)
5.4.7 Discussion
219(1)
5.4.7.1 HRI Contributions
219(2)
5.4.7.2 Performance Improvement Approach
221(1)
5.4.8 Conclusion
221(1)
Acknowledgments
222(1)
References
222(1)
5.5 Friendship Estimation Model for Social Robots to Understand Human Relationships
223(14)
Takayuki Kanda
Hiroshi Ishiguro
Abstract
223(1)
5.5.1 Introduction
224(2)
5.5.2 Friendship Estimation Model from Observation
226(1)
5.5.2.1 Related Research on Friendship
226(1)
5.5.2.2 Related Research on Sensor-Based Observation of Humans' Interactions
226(1)
5.5.2.3 Friendship Estimation Model
227(1)
5.5.2.4 Algorithm
228(1)
5.5.3 Robovie: An Interactive Humanoid Robot
229(1)
5.5.3.1 Hardware of Interactive Humanoid Robot
229(2)
5.5.3.2 Person Identification with Wireless ID Tags
231(1)
5.5.3.3 Interactive Behaviors
231(1)
5.5.4 Experiment and Result
232(1)
5.5.4.1 Method
232(1)
5.5.4.2 Results for Frequency of Friend-Accompanying Behavior
232(1)
5.5.4.3 Results for Friendship Estimation
233(2)
5.5.4.4 Results for Comparison between Frequency of Interaction with the Robot and Estimation Result
235(1)
5.5.5 Conclusions
235(1)
Acknowledgments
236(1)
References
236(1)
5.6 Estimating Group States for Interactive Humanoid Robots
237(18)
Masahiro Shiomi
Kenta Nohara
Takayuki Kanda
Hiroshi Ishiguro
Norihiro Hagita
Abstract
237(1)
5.6.1 Introduction
238(2)
5.6.2 Estimating a Group State
240(3)
5.6.2.1 Sensing Part
243(1)
5.6.2.2 Clustering Part
243(4)
5.6.2.3 Estimating Part
247(1)
5.6.3 Experiment
247(1)
5.6.3.1 Gathering Data for Evaluation
247(1)
5.6.3.2 Making an SVM Model Using Gathered Data
248(1)
5.6.3.3 Evaluation of Proposed Method
249(1)
5.6.4 Discussion
250(1)
5.6.4.1 Contributions for Human-Robot Interaction
250(1)
5.6.4.2 Performance Improvement Approach
250(2)
5.6.5 Conclusion
252(1)
Acknowledgments
252(1)
References
252(3)
6 Shared Autonomy and Teleoperation
255(42)
6.1 Introduction
255(2)
References
256(1)
6.2 A Semi-Autonomous Social Robot That Asks Help from a Human Operator
257(12)
Masahiro Shiomi
Daisuke Sakamoto
Takayuki Kanda
Carlos Toshinori Ishi
Hiroshi Ishiguro
Norihiro Hagita
Abstract
257(1)
6.2.1 Introduction
258(1)
6.2.2 Semi-Autonomous Robot System
258(1)
6.2.2.1 Overview
258(1)
6.2.2.2 Reactive Layer
259(1)
6.2.2.3 Behavioral Layer
260(2)
6.2.2.4 Reflective Layer
262(1)
6.2.3 Field Trial at a Train Station
263(1)
6.2.3.1 Environment and Settings
263(2)
6.2.3.2 Results
265(3)
6.2.4 Conclusion
268(1)
Acknowledgments
268(1)
References
269(1)
6.3 Teleoperation of Multiple Social Robots
269(28)
Dylan F. Glas
Takayuki Kanda
Hiroshi Ishiguro
Norihiro Hagita
Abstract
269(1)
6.3.1 Introduction
270(1)
6.3.1.1 Related Work
270(1)
6.3.1.2 Design Considerations
271(2)
6.3.1.3 Social Human-Robot Interaction
273(1)
6.3.1.4 Autonomy Design
273(3)
6.3.1.5 Teleoperation Interface Design
276(1)
6.3.1.6 Task Difficulty Metrics
277(1)
6.3.2 Implementation
278(1)
6.3.2.1 Social Human-Robot Interaction
278(1)
6.3.2.2 Autonomy Design
279(1)
6.3.2.3 Multi-Robot Coordination
280(1)
6.3.2.4 Teleoperation Interface Design
280(1)
6.3.3 Experimental Validation
281(1)
6.3.3.1 Laboratory Experiment
281(3)
6.3.3.2 Experimental Results
284(2)
6.3.3.3 Operator Experience
286(1)
6.3.4 Simulation
287(1)
6.3.4.1 Interaction Model
287(1)
6.3.4.2 Task Success
287(1)
6.3.4.3 Operator Allocation
288(1)
6.3.4.4 Number of PTC Behaviors
288(1)
6.3.4.5 Relying on Autonomy
289(1)
6.3.5 Discussion
290(1)
6.3.5.1 Effectiveness of Shared Autonomy
291(1)
6.3.5.2 Defining Criticality
291(1)
6.3.5.3 Operator Workload
292(1)
6.3.5.4 Limitations
292(1)
6.3.6 Conclusions
292(1)
Acknowledgment
293(1)
References
293(4)
7 Learning and Adaptation
297(48)
7.1 Introduction
297(2)
Reference
298(1)
7.2 Moderating Users' Tension to Enable Them to Exhibit Other Emotions
299(13)
Takayuki Kanda
Kayoko Iwase
Masahiro Shiomi
Hiroshi Ishiguro
Abstract
300(1)
7.2.1 Introduction
300(1)
7.2.2 Does Tension Disturb Occurrence of Other Emotions?
301(1)
7.2.2.1 Background
301(1)
7.2.2.2 Hypothesis: Disturbance Caused by Tension
301(1)
7.2.2.3 Hypothesis Verification
302(1)
7.2.3 System Configuration
303(1)
7.2.3.1 Overview
303(1)
7.2.3.2 Robovie
303(1)
7.2.3.3 Face Tracking Unit
304(1)
7.2.3.4 Emotion Recognition Unit
304(1)
7.2.3.5 Speech Recognition Unit
305(1)
7.2.3.6 Behavior Selector: Tension Moderation
306(1)
7.2.4 Experiment
306(1)
7.2.4.1 Settings
306(1)
7.2.4.2 Results
307(3)
7.2.4.3 Discussion
310(1)
7.2.5 Conclusion
311(1)
Acknowledgments
311(1)
References
311(1)
7.3 Adapting Nonverbal Behavior Parameters to Be Preferred by Individuals
312(13)
Noriaki Mitsunaga
Christian Smith
Takayuki Kanda
Hiroshi Ishiguro
Norihiro Hagita
Abstract
313(1)
7.3.1 Introduction
313(1)
7.3.2 The Behavior Adaptation System
314(1)
7.3.2.1 The Robot and Its Interaction Behaviors
314(1)
7.3.2.2 Adapted Parameters
315(1)
7.3.2.3 Reward Function
316(1)
7.3.2.4 The PGRL Algorithm
317(1)
7.3.3 Evaluation
317(1)
7.3.3.1 Participants
318(1)
7.3.3.2 Settings
318(1)
7.3.3.3 Measurements
319(1)
7.3.4 Adaptation Results
320(3)
7.3.5 Discussion
323(1)
7.3.5.1 Difficulties
323(1)
7.3.6 Conclusion
323(1)
Acknowledgments
324(1)
References
324(1)
7.4 Learning Pedestrians' Behavior in a Shopping Mall
325(20)
Takayuki Kanda
Dylan F. Glas
Masahiro Shiomi
Hiroshi Ishiguro
Norihiro Hagita
Abstract
325(1)
7.4.1 Introduction
325(1)
7.4.1.1 Related Works
326(1)
7.4.1.2 The Use of Space
326(1)
7.4.1.3 Global Behavior
326(1)
7.4.1.4 System Configuration
327(2)
7.4.1.5 Analysis of Accumulated Trajectories
329(5)
7.4.1.6 Anticipation System
334(6)
7.4.1.7 Field Test with a Social Robot
340(2)
7.4.2 Conclusion
342(1)
Acknowledgments
343(1)
References
343(2)
Index 345
Takayuki Kanda is currently a senior researcher at ATR Intelligent Robotics and Communication Laboratories, Kyoto, Japan. His current research interests include intelligent robotics, humanrobot interaction, and vision-based mobile robots. Dr. Kanda was named to serve as a steering committee co-chair of the ACM/IEEE international conference of humanrobot interaction from 2010 to 2013.

Hiroshi Ishiguro has been a visiting researcher at ATR Media Information Science Laboratories since 1999, where he has developed the interactive humanoid robot, Robovie. He is also a professor in the Department of Systems Innovation, Osaka University, and a group leader at ATR Hiroshi Ishiguro Laboratory. In 2010, he served as a general co-chair of the ACM/IEEE international conference of humanrobot interaction.