Muutke küpsiste eelistusi

E-raamat: Hybrid Electric Vehicle Design and Control: Intelligent Omnidirectional Hybrids

  • Formaat: 304 pages
  • Ilmumisaeg: 22-Sep-2013
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071826822
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 153,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 304 pages
  • Ilmumisaeg: 22-Sep-2013
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071826822
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An in-depth guide to the design and control of hybrid electric vehicles, covering vehicle electronics, advanced control, powertrain management, battery and energy management, and artificial intelligence

Hybrid Electric Vehicle Design and Control explains how to implement the design of a novel intelligent omnidirectional hybrid electric vehicle. The book fully discusses advanced control methods, anti-noise online state of charge estimation, fast charging, cell equalization, and energy management in addition to typical coverage of the powertrain system—electric motor, battery, DC/DC, charger.

The transformation of the vehicle powertrain system – replacing the traditional mechanical transmission system with driving-by-wire and control-by-wire technologies – also introduces a revolution in vehicle design concepts. Novel features such as 4-wheel independent steering (4WIS), 4-wheel independent driving (4WID), and battery and energy system management are possible. These concepts are covered in this unique guide.

  • Systematically elaborates on the concepts, structure, implementation, key components, and control systems for intelligent omnidirectional hybrid electric vehicles
  • Provides details of a vehicle prototype into which the new vehicle design concept and advanced control technologies are incorporated
  • Step-by-step coverage on how to develop an intelligent omnidirectional hybrid electric vehicle
  • Filled with figures and tables to illustrate both simulation and experimental results
Preface xi
1 Introduction
1(10)
1.1 Background
3(4)
1.2 Objectives
7(1)
1.3 Outline of the Book
8(3)
2 System Design and Implementation
11(18)
2.1 Configuration
13(5)
2.1.1 Zero Radius Turning
15(2)
2.1.2 Lateral Parking
17(1)
2.1.3 Front-Wheel Steering
17(1)
2.2 System Design
18(7)
2.2.1 Mechanical Design
19(1)
2.2.2 Electric Design
20(2)
2.2.3 Positioning of Steering Angles
22(1)
2.2.4 Software
23(2)
2.2.5 User Interface
25(1)
2.3 Implementation and Testing
25(2)
2.4 Summary
27(2)
3 Four-Wheel Independent Steering Control
29(28)
3.1 Modeling
31(4)
3.1.1 Vehicle Body
31(2)
3.1.2 Tire
33(1)
3.1.3 Steering Actuator
33(2)
3.2 Extended Steering Interface
35(5)
3.2.1 Interface Design
35(1)
3.2.2 Defining Target ICR
36(2)
3.2.3 Defining Target Orientations of Wheels
38(1)
3.2.4 Hardware Prototype
39(1)
3.3 Force Feedback Control
40(4)
3.3.1 Defining Current Steering Condition
40(2)
3.3.2 Force Feedback Reference
42(1)
3.3.3 Motor Torque Control
43(1)
3.3.4 Structure of Force Feedback Controller
43(1)
3.4 Behavior-Based Steering Controller
44(4)
3.4.1 Position Error
44(1)
3.4.2 Kinematic Constraint Error
44(1)
3.4.3 Structure of Behavior-Based Steering Controller
45(1)
3.4.4 Stability Analysis
46(2)
3.5 Simulations and Experiments
48(6)
3.5.1 Structure of Simulation Environment
48(1)
3.5.2 Steering Motion Simulation
49(1)
3.5.3 Force Feedback Simulation
49(2)
3.5.4 Steering Behavior
51(1)
3.5.5 Path Tracking
52(1)
3.5.6 Driving Efficiency
53(1)
3.6 Summary
54(3)
4 Four-Wheel Independent Force Control
57(34)
4.1 Traction Force Distribution
59(14)
4.1.1 Deterministic Force Generation
61(6)
4.1.2 Optimal Traction Force Distribution
67(2)
4.1.3 Performance Analysis
69(4)
4.2 Direct Yaw Moment Control
73(15)
4.2.1 Deterministic Yaw Moment Control
75(5)
4.2.2 Feedforward and Feedback Control
80(2)
4.2.3 Performance Analysis
82(6)
4.3 Summary
88(3)
5 Battery Management System
91(94)
5.1 Hardware Design
93(17)
5.1.1 System Structure and Function Analysis
95(15)
5.2 Robust State of Charge Estimation
110(35)
5.2.1 Framework Overview
110(1)
5.2.2 Current Denoising
111(7)
5.2.3 Current Zero-Drift Reduction
118(6)
5.2.4 Simulation: RC Model and Filter
124(7)
5.2.5 Experiment and Application: Modified ESC Model and Extended Kalman Filter
131(12)
5.2.6 Data Fusion and Overall Performance
143(2)
5.3 Fast-Charging Controller
145(18)
5.3.1 Framework Overview
146(1)
5.3.2 Predictive Models
147(5)
5.3.3 Formulation under Model Predictive Control Framework
152(2)
5.3.4 Optimization Using Genetic Algorithm
154(3)
5.3.5 Performance Demonstration
157(6)
5.4 Battery Equalization
163(19)
5.4.1 Equalizing Circuit and Analysis
165(7)
5.4.2 Fuzzy Equalization Based on State of Charge
172(4)
5.4.3 Application Results
176(6)
5.5 Summary
182(3)
6 Energy Management System
185(62)
6.1 Modeling of Series Electric Vehicle
187(18)
6.1.1 Main Components
189(12)
6.1.2 4WIS Series Electric Vehicle
201(1)
6.1.3 Building Up and Analysis
201(4)
6.2 Load Forecasting
205(12)
6.2.1 Definition of Load Level
206(4)
6.2.2 CNN-NDEKF-Based Forecasting
210(4)
6.2.3 Simulation Study
214(3)
6.3 Energy Management
217(18)
6.3.1 Performance Criteria Selection
219(1)
6.3.2 Model Predictive Control Approach
220(6)
6.3.3 Particle Swarm Optimization
226(9)
6.4 Experiments and Analysis
235(10)
6.4.1 Pure Electrical Experiment
235(2)
6.4.2 Thermostat Control Experiment
237(4)
6.4.3 MPC-LFS Experiment
241(2)
6.4.4 Comparisons
243(2)
6.5 Summary
245(2)
7 Conclusions
247(8)
7.1 Advancement in Vehicle Technology with State-of-the-Art Robotics Research
249(1)
7.2 Omnidirectional Vehicle Structure Supporting 4WIS and 4WID
250(1)
7.3 Intelligent Battery Management System Specialized for HEV
251(1)
7.4 Intelligent Energy Management System Specialized for HEV
252(3)
Abbreviations 255(4)
References 259(10)
Index 269
Yangsheng Xu is Chair Professor and Pro-Vice Chancellor of the Chinese University of Hong Kong. He is a professor of Automation and Computer-Aided Engineering, specializing in robotics, dynamics and control, and manufacturing.





Jingyu Yan is a research associate of the Chinese University of Hong Kong, specializing in electric vehicles, battery management system, and predictive control.





Huihuan Qian is a research assistant professor of the Chinese University of Hong Kong, specializing in robotics, dynamics and control, and omni-directional vehicles.





Tin Lun Lam is a research associate of the Chinese University of Hong Kong, specializing in robotics, human-machine interface, and intelligent control.