Muutke küpsiste eelistusi

E-raamat: Hybrid Feedback Control

  • Formaat: 424 pages
  • Ilmumisaeg: 12-Jan-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691189536
  • Formaat - PDF+DRM
  • Hind: 77,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 424 pages
  • Ilmumisaeg: 12-Jan-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691189536

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A comprehensive introduction to hybrid control systems and design

Hybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.

In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.

Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation.

Arvustused

"[ A] thorough analysis of hybrid control and various powerful design tools to show that hybrid control is an essential design method."---Ba Khiet Le, MathSciNet

Preface xi
List of Symbols
xv
1 Introduction
1(31)
1.1 Overview
2(13)
1.2 Why Hybrid Control?
15(13)
1.2.1 Hybrid Models Capture Rich Behavior
15(4)
1.2.2 Continuous-Time Systems not Stabilizable via Continuous State-Feedback Can Be Stabilized via Hybrid Control
19(1)
1.2.3 Almost Global Asymptotic Stability Turns Global
20(2)
1.2.4 Nonrobust Stability Becomes Robust
22(2)
1.2.5 Controlled Intersample Behavior and Aperiodic Sampling
24(2)
1.2.6 Hybrid Feedback Control Improves Performance
26(2)
1.3 Exercises
28(2)
1.4 Notes
30(2)
2 Modeling Framework
32(57)
2.1 Overview
33(2)
2.2 On Truly Hybrid Models
35(4)
2.3 Modeling
39(32)
2.3.1 From Plants and Controllers to Closed-Loop Systems
40(8)
2.3.2 Hybrid Basic Conditions
48(6)
2.3.3 Solution Concept
54(9)
2.3.4 Existence of Solutions to Closed-Loop Systems
63(6)
2.3.5 Hybrid System Models with Disturbances
69(2)
2.4 Numerical Simulation
71(7)
2.5 Exercises
78(6)
2.6 Notes
84(5)
3 Notions and Analysis Tools
89(27)
3.1 Overview
90(3)
3.2 Notions
93(8)
3.2.1 Asymptotic Stability
93(5)
3.2.2 Invariance
98(2)
3.2.3 Robustness to Disturbances
100(1)
3.3 Analysis Tools
101(11)
3.3.1 Hybrid Lyapunov Theorem
101(7)
3.3.2 Hybrid Invariance Principle
108(1)
3.3.3 Robustness from K.C Pre-Asymptotic Stability
109(3)
3.4 Exercises
112(2)
3.5 Notes
114(2)
4 Uniting Control
116(24)
4.1 Overview
117(4)
4.2 Hybrid Controller
121(3)
4.3 Closed-Loop System
124(2)
4.4 Design
126(10)
4.5 Exercises
136(3)
4.6 Notes
139(1)
5 Event-Triggered Control
140(34)
5.1 Overview
141(5)
5.2 Hybrid Controller
146(5)
5.3 Closed-Loop System
151(1)
5.4 Design
152(16)
5.4.1 Completeness of Maximal Solutions
152(2)
5.4.2 Minimum Time in Between Events
154(4)
5.4.3 Pre-Asymptotic Stability
158(10)
5.5 Exercises
168(4)
5.6 Notes
172(2)
6 Throw-Catch Control
174(31)
6.1 Overview
175(4)
6.2 Hybrid Controller
179(9)
6.3 Closed-Loop System
188(3)
6.4 Design
191(8)
6.4.1 Design of Local Stabilizer k0
191(1)
6.4.2 Design of Local Stabilizers ki,s and Sets Ai,s
192(1)
6.4.3 Design of Open-Loop Control Laws
193(1)
6.4.4 Design of Bootstrap Controller and Sets
194(5)
6.5 Exercises
199(4)
6.6 Notes
203(2)
7 Synergistic Control
205(27)
7.1 Overview
206(3)
7.2 Hybrid Controller
209(3)
7.3 Closed-Loop System
212(7)
7.4 Design
219(8)
7.4.1 The General Case
219(3)
7.4.2 The Control Affine Case
222(5)
7.5 Exercises
227(3)
7.6 Notes
230(2)
8 Supervisory Control
232(25)
8.1 Overview
233(3)
8.2 Hybrid Controller
236(3)
8.3 Closed-Loop System
239(4)
8.4 Design
243(8)
8.5 Exercises
251(3)
8.6 Notes
254(3)
9 Passivity-Based Control
257(25)
9.1 Overview
257(6)
9.2 Passivity
263(5)
9.3 Pre-Asymptotic Stability from Passivity
268(4)
9.4 Design
272(5)
9.5 Exercises
277(3)
9.6 Notes
280(2)
10 Feedback Design via Control Lyapunov Functions
282(29)
10.1 Overview
282(2)
10.2 Control Lyapunov Functions
284(5)
10.3 Design
289(18)
10.3.1 Nominal Design
289(11)
10.3.2 Robust Design
300(7)
10.4 Exercises
307(2)
10.5 Notes
309(2)
11 Invariants and Invariance-Based Control
311(26)
11.1 Overview
312(2)
11.2 Nominal and Robust Forward Invariance
314(17)
11.2.1 Forward Invariance
314(14)
11.2.2 Weak Forward Invariance
328(1)
11.2.3 Robust Forward Invariance
329(2)
11.3 Design
331(1)
11.4 Exercises
332(3)
11.5 Notes
335(2)
12 Temporal Logic
337(26)
12.1 Overview
338(2)
12.2 LTL Semantics
340(3)
12.3 Characterization of Basic Formulas
343(5)
12.3.1 Properties of H for the Next Operator
343(2)
12.3.2 Forward Invariance for the Always Operator
345(1)
12.3.3 Finite-Time Attractivity for the Eventually Operator
346(1)
12.3.4 Properties of H for the Until Operator
347(1)
12.4 Sufficient Conditions
348(11)
12.4.1 Sufficient Conditions for the Always Operator
348(3)
12.4.2 Sufficient Conditions for the Eventually Operator
351(5)
12.4.3 Sufficient Conditions for the Until Operator
356(3)
12.5 Exercises
359(2)
12.6 Notes
361(2)
Appendix A Mathematical Review 363(13)
A.1 Models
363(3)
A.2 Maps
366(1)
A.3 Sets
367(1)
A.4 Regularity
368(6)
A.5 Exercises
374(2)
Appendix B Proof of the Hybrid Lyapunov Theorem 376(4)
B.1 Proof of Stability of A
376(2)
B.2 Proof of Pre-Asymptotic Stability of A
378(2)
Bibliography 380(18)
Index 398
Ricardo G. Sanfelice is professor of electrical and computer engineering at the University of California, Santa Cruz. He is the coauthor of Hybrid Dynamical Systems (Princeton).