Preface |
|
xi | |
|
|
xv | |
|
|
1 | (31) |
|
|
2 | (13) |
|
|
15 | (13) |
|
1.2.1 Hybrid Models Capture Rich Behavior |
|
|
15 | (4) |
|
1.2.2 Continuous-Time Systems not Stabilizable via Continuous State-Feedback Can Be Stabilized via Hybrid Control |
|
|
19 | (1) |
|
1.2.3 Almost Global Asymptotic Stability Turns Global |
|
|
20 | (2) |
|
1.2.4 Nonrobust Stability Becomes Robust |
|
|
22 | (2) |
|
1.2.5 Controlled Intersample Behavior and Aperiodic Sampling |
|
|
24 | (2) |
|
1.2.6 Hybrid Feedback Control Improves Performance |
|
|
26 | (2) |
|
|
28 | (2) |
|
|
30 | (2) |
|
|
32 | (57) |
|
|
33 | (2) |
|
2.2 On Truly Hybrid Models |
|
|
35 | (4) |
|
|
39 | (32) |
|
2.3.1 From Plants and Controllers to Closed-Loop Systems |
|
|
40 | (8) |
|
2.3.2 Hybrid Basic Conditions |
|
|
48 | (6) |
|
|
54 | (9) |
|
2.3.4 Existence of Solutions to Closed-Loop Systems |
|
|
63 | (6) |
|
2.3.5 Hybrid System Models with Disturbances |
|
|
69 | (2) |
|
|
71 | (7) |
|
|
78 | (6) |
|
|
84 | (5) |
|
3 Notions and Analysis Tools |
|
|
89 | (27) |
|
|
90 | (3) |
|
|
93 | (8) |
|
3.2.1 Asymptotic Stability |
|
|
93 | (5) |
|
|
98 | (2) |
|
3.2.3 Robustness to Disturbances |
|
|
100 | (1) |
|
|
101 | (11) |
|
3.3.1 Hybrid Lyapunov Theorem |
|
|
101 | (7) |
|
3.3.2 Hybrid Invariance Principle |
|
|
108 | (1) |
|
3.3.3 Robustness from K.C Pre-Asymptotic Stability |
|
|
109 | (3) |
|
|
112 | (2) |
|
|
114 | (2) |
|
|
116 | (24) |
|
|
117 | (4) |
|
|
121 | (3) |
|
|
124 | (2) |
|
|
126 | (10) |
|
|
136 | (3) |
|
|
139 | (1) |
|
5 Event-Triggered Control |
|
|
140 | (34) |
|
|
141 | (5) |
|
|
146 | (5) |
|
|
151 | (1) |
|
|
152 | (16) |
|
5.4.1 Completeness of Maximal Solutions |
|
|
152 | (2) |
|
5.4.2 Minimum Time in Between Events |
|
|
154 | (4) |
|
5.4.3 Pre-Asymptotic Stability |
|
|
158 | (10) |
|
|
168 | (4) |
|
|
172 | (2) |
|
|
174 | (31) |
|
|
175 | (4) |
|
|
179 | (9) |
|
|
188 | (3) |
|
|
191 | (8) |
|
6.4.1 Design of Local Stabilizer k0 |
|
|
191 | (1) |
|
6.4.2 Design of Local Stabilizers ki,s and Sets Ai,s |
|
|
192 | (1) |
|
6.4.3 Design of Open-Loop Control Laws |
|
|
193 | (1) |
|
6.4.4 Design of Bootstrap Controller and Sets |
|
|
194 | (5) |
|
|
199 | (4) |
|
|
203 | (2) |
|
|
205 | (27) |
|
|
206 | (3) |
|
|
209 | (3) |
|
|
212 | (7) |
|
|
219 | (8) |
|
|
219 | (3) |
|
7.4.2 The Control Affine Case |
|
|
222 | (5) |
|
|
227 | (3) |
|
|
230 | (2) |
|
|
232 | (25) |
|
|
233 | (3) |
|
|
236 | (3) |
|
|
239 | (4) |
|
|
243 | (8) |
|
|
251 | (3) |
|
|
254 | (3) |
|
9 Passivity-Based Control |
|
|
257 | (25) |
|
|
257 | (6) |
|
|
263 | (5) |
|
9.3 Pre-Asymptotic Stability from Passivity |
|
|
268 | (4) |
|
|
272 | (5) |
|
|
277 | (3) |
|
|
280 | (2) |
|
10 Feedback Design via Control Lyapunov Functions |
|
|
282 | (29) |
|
|
282 | (2) |
|
10.2 Control Lyapunov Functions |
|
|
284 | (5) |
|
|
289 | (18) |
|
|
289 | (11) |
|
|
300 | (7) |
|
|
307 | (2) |
|
|
309 | (2) |
|
11 Invariants and Invariance-Based Control |
|
|
311 | (26) |
|
|
312 | (2) |
|
11.2 Nominal and Robust Forward Invariance |
|
|
314 | (17) |
|
11.2.1 Forward Invariance |
|
|
314 | (14) |
|
11.2.2 Weak Forward Invariance |
|
|
328 | (1) |
|
11.2.3 Robust Forward Invariance |
|
|
329 | (2) |
|
|
331 | (1) |
|
|
332 | (3) |
|
|
335 | (2) |
|
|
337 | (26) |
|
|
338 | (2) |
|
|
340 | (3) |
|
12.3 Characterization of Basic Formulas |
|
|
343 | (5) |
|
12.3.1 Properties of H for the Next Operator |
|
|
343 | (2) |
|
12.3.2 Forward Invariance for the Always Operator |
|
|
345 | (1) |
|
12.3.3 Finite-Time Attractivity for the Eventually Operator |
|
|
346 | (1) |
|
12.3.4 Properties of H for the Until Operator |
|
|
347 | (1) |
|
12.4 Sufficient Conditions |
|
|
348 | (11) |
|
12.4.1 Sufficient Conditions for the Always Operator |
|
|
348 | (3) |
|
12.4.2 Sufficient Conditions for the Eventually Operator |
|
|
351 | (5) |
|
12.4.3 Sufficient Conditions for the Until Operator |
|
|
356 | (3) |
|
|
359 | (2) |
|
|
361 | (2) |
Appendix A Mathematical Review |
|
363 | (13) |
|
|
363 | (3) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
368 | (6) |
|
|
374 | (2) |
Appendix B Proof of the Hybrid Lyapunov Theorem |
|
376 | (4) |
|
B.1 Proof of Stability of A |
|
|
376 | (2) |
|
B.2 Proof of Pre-Asymptotic Stability of A |
|
|
378 | (2) |
Bibliography |
|
380 | (18) |
Index |
|
398 | |