Muutke küpsiste eelistusi

E-raamat: Hydraulic Fracturing and Well Stimulation, Volume 1

Edited by (University of Southern California, CA; University of Houston, TX)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Oct-2019
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119555728
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 225,94 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Oct-2019
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119555728
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Hydraulic fracturing (or “fracking”) has been a source of both achievement and controversy for years, and it continues to be a hot-button issue all over the world.  It has made the United States an energy exporting country once again and kept the price of gasoline low, for consumers and companies.  On the other hand, it has been potentially a dangerous and destructive practice that has led to environmental problems and health issues.  It is a deeply important subject for the petroleum engineer to explore as much as possible.

This collection of papers is the first in the series, Sustainable Energy Engineering, tackling this very complex process of hydraulic fracturing and its environmental and economic ramifications.  Born out of the journal by the same name, formerly published by Scrivener Publishing, most of the articles in this volume have been updated, and there are some new additions, as well, to keep the engineer abreast of any updates and new methods in the industry.

Truly a snapshot of the state-of-the-art, this groundbreaking volume is a must-have for any petroleum engineer working in the field, environmental engineers, petroleum engineering students, and any other engineer or scientist working with hydraulic fracturing.

Foreword xiii
Part 1: Introduction 1(34)
1 Hydraulic Fracturing, An Overview
3(32)
Fred Aminzadeh
1.1 What is Hydraulic Fracturing?
4(1)
1.2 Why Hydraulic Fracturing is Important
5(3)
1.3 Fracture Characterization
8(3)
1.4 Geomechanics of Hydraulic Fracturing
11(3)
1.5 Environmental Aspects of Hydraulic Fracturing
14(4)
1.6 Induced Seismicity
18(5)
1.7 Case Study: Fracturing Induced Seismicity in California
23(4)
1.8 Assessment of Global Oil and Gas Resources Amenable for Extraction via Hydraulic Fracturing
27(1)
1.9 Economics of HF
27(1)
1.10 Conclusions
28(2)
Acknowledgment
30(1)
References
30(5)
Part 2: General Concepts 35(64)
2 Evolution of Stress Transfer Mechanisms During Mechanical Interaction Between Hydraulic Fractures and Natural Fractures
37(16)
Birendra Jha
2.1 Introduction
37(2)
2.2 Physical Model
39(1)
2.3 Mathematical Formulation
40(3)
2.4 Numerical Model
43(1)
2.5 Simulation Results
44(2)
2.6 Effect of Hydraulic Fracturing on Natural Fractures
46(3)
2.7 Conclusion
49(1)
References
50(3)
3 Primer on Hydraulic Fracturing Concerning Initiatives on Energy Sustainability
53(26)
Michael Holloway
Oliver Rudd
3.1 Hydraulic Fracturing
54(12)
3.1.1 Environmental Impact - Reality vs. Myth
54(1)
3.1.2 The Tower of Babel and How it Could be the Cause of Much of the Fracking Debate
55(2)
3.1.3 Frac Fluids and Composition
57(1)
3.1.4 Uses and Needs for Frac Fluids
57(1)
3.1.5 Common Fracturing Additives
58(2)
3.1.6 Typical Percentages of Commonly Used Additives
60(1)
3.1.6.1 Proppants
61(1)
3.1.6.2 Silica Sand
63(1)
3.1.6.3 Resin Coated Proppant
65(1)
3.1.6.4 Manufactured Ceramics Proppants
65(1)
3.2 Additional Types
66(1)
3.3 Other Most Common Objections to Drilling Operations
66(2)
3.3.1 Noise
67(1)
3.4 Changes in Landscape and Beauty of Surroundings
68(1)
3.5 Increased Traffic
69(1)
3.6 Chemicals and Products on Locations
70(7)
3.6.1 Material Safety Data Sheets (MSDS)
72(1)
3.6.1.1 Contents of an MSDS
73(1)
3.6.1.2 Product Identification
73(1)
3.6.1.3 Hazardous Ingredients of Mixtures
74(1)
3.6.1.4 Physical Data
74(1)
3.6.1.5 Fire & Explosion Hazard Data
75(1)
3.6.1.6 Health Hazard Data
76(1)
3.6.1.7 Reactivity Data
76(1)
3.6.1.8 Personal Protection Information
77(1)
3.7 Conclusion
77(1)
Bibliography
78(1)
4 A Graph Theoretic Approach for Spatial Analysis of Induced Fracture Networks
79(20)
Deborah Glosser
Jennifer R. Bauer
4.1 Background and Rationale
80(3)
4.2 Graph-Based Spatial Analysis
83(4)
4.2.1 Acquire Geologic Data and Define Regional Bounding Lithology
84(1)
4.2.2 Details of the Topological Algorithm
85(1)
4.2.2.1 Data Acquisition, Conditioning and Quanta
85(1)
4.2.2.2 Details of the k-Nearest Neighbor Algorithm
86(1)
4.2.3 The Value of the Topological Approach Algorithm
86(1)
4.3 Real World Applications of the Algorithm
87(4)
4.3.1 Bradford Field: Contrasting the Graph-Based Approaches; k Sensitivity
87(1)
4.3.1.1 Data Sources
88(1)
4.3.1.2 Results
88(1)
4.3.2 Armstrong PA: Testing the Algorithms Against a Known Leakage Scenario
88(1)
4.3.2.1 Data Sources
90(1)
4.3.2.2 Results
90(1)
4.4 Discussion
91(2)
4.4.1 Uses for Industry and Regulators
93(1)
4.5 Conclusions
93(1)
Acknowledgments
94(1)
References
94(5)
Part 3: Optimum Design Parameters 99(60)
5 Fracture Spacing Design for Multistage Hydraulic Fracturing Completions for Improved Productivity
101(24)
D. Malty
J. Ciezobka
I. Salehi
5.1 Introduction
101(2)
5.2 Method
103(7)
5.2.1 Impact of Natural Fractures
104(3)
5.2.2 Workflow
107(1)
5.2.3 Model Fine-Tuning
108(1)
5.2.4 Need for Artificial Intelligence
109(1)
5.3 Data
110(4)
5.4 Results
114(7)
5.4.1 Applicability Considerations
120(1)
5.5 Concluding Remarks
121(1)
Acknowledgment
122(1)
References
122(3)
6 Clustering-Based Optimal Perforation Design Using Well Logs
125(16)
Andrei S. Popa
Steve Cassidy
Sinisha Jikich
6.1 Introduction
126(1)
6.2 Objective and Motivation
127(1)
6.3 Technology
128(1)
6.4 Clustering Analysis
129(2)
6.4.1 C-Means (FCM) Algorithm
130(1)
6.5 Methodology and Analysis
131(3)
6.5.1 Available Data
131(3)
6.6 Applying the FCM Algorithm
134(2)
6.7 Results and Discussion
136(3)
6.8 Conclusions
139(1)
Acknowledgments
139(1)
References
139(2)
7 Horizontal Well Spacing and Hydraulic Fracturing Design Optimization: A Case Study on Utica-Point Pleasant Shale Play
141(18)
Alireza Shahkarami
Guochang Wang
7.1 Introduction
142(1)
7.2 Methodology
143(4)
7.2.1 The Base Reservoir Simulation Model
143(4)
7.3 Optimization Scenarios
147(1)
7.4 Results and Discussion
148(6)
7.4.1 Base Reservoir Model - A Single Well Case
148(1)
7.4.2 Multi-Lateral Depletion - Finding the Optimum Number of Wells
148(3)
7.4.3 Completion Parameters
151(2)
7.4.4 Second Economic Scenario, Reducing the Cost of Completion
153(1)
7.5 Conclusion
154(2)
Acknowledgments
156(3)
Part 4: Fracture Reservoir Characterization 159(84)
Introduction
159(2)
References
161(2)
8 Geomechanical Modeling of Fault Systems Using the Material Point Method - Application to the Estimation of Induced Seismicity Potential to Bolster Hydraulic Fracturing Social License
163(18)
Nicholas M. Umholtz
Ahmed Ouenes
8.1 Introduction
164(1)
8.2 The Social License to Operate (SLO)
165(1)
8.3 Regional Faults in Oklahoma, USA and Alberta, Canada used as Input in Geomechanical Modeling
166(2)
8.4 Modeling Earthquake Potential using Numerical Material Models
168(5)
8.5 A New Workflow for Estimating Induced Seismicity Potential and its Application to Oklahoma and Alberta
173(5)
8.6 The Benefits of a Large Scale Predictive Model and Future Research
178(1)
8.7 Conflict of Interest
179(1)
Acknowledgments
179(1)
References
179(2)
9 Correlating Pressure with Microseismic to Understand Fluid-Reservoir Interactions During Hydraulic Fracturing
181(18)
Debotyam Maity
9.1 Introduction
181(1)
9.2 Method
182(5)
9.2.1 Pressure Data Analysis
182(4)
9.2.2 Microseismic Data Analysis
186(1)
9.3 Data
187(1)
9.4 Results
188(8)
9.4.1 Pitfalls in Analysis
196(1)
9.5 Conclusions
196(1)
9.6 Acknowledgments
197(1)
References
197(2)
10 Multigrid Fracture Stimulated Reservoir Volume Mapping Coupled with a Novel Mathematical Optimization Approach to Shale Reservoir Well and Fracture Design
199(28)
Ahmed Alzahabi
Noah Berlow
M.Y. Soliman
Ghazi AlQahtani
10.1 Introduction
200(3)
10.2 Problem Definition and Modeling
203(1)
10.2.1 Geometric Interpretation
203(1)
10.2.1.1 Fracture Geometry
203(1)
10.2.2 The Developed Model Flow Chart
204(1)
10.2.3 Well and Fracture Design Vector Components
204(1)
10.3 Development of a New Mathematical Model
204(8)
10.3.1 Methodology
207(1)
10.3.2 Objective Function
207(1)
10.3.3 Assumptions and Constraints Considered in the Mathematical Model
207(1)
10.3.3.1 Sets
208(1)
10.3.3.2 Variables
208(1)
10.3.3.3 Decision Variables
208(1)
10.3.3.4 Extended Sets
208(1)
10.3.3.5 Constant Parameters
209(1)
10.3.3.6 Constraints
209(1)
10.3.4 Stimulated Reservoir Volume Representation
210(1)
10.3.5 Optimization Procedure
211(1)
10.4 Model Building
212(4)
10.4.1 Simulation Model of Well Pad and SRV's Evaluation
214(2)
10.5 Results and Discussions
216(1)
10.6 Conclusions and Recommendations
216(2)
References
218(2)
Appendix A: Abbreviations
220(1)
Appendix B: Definition of the Fracturability Index Used in the Well Placement Process
220(1)
Appendix C: Geometric Interpretation of Parameters Used in Building the Model
221(6)
11 A Semi-Analytical Model for Predicting Productivity of Refractured Oil Wells with Uniformly Distributed Radial Fractures
227(16)
Xiao Cal
Boyun Guo
Gao Li
11.1 Introduction
228(1)
11.2 Mathematical Model
229(2)
11.3 Model Verification
231(1)
11.4 Sensitivity Analysis
231(2)
11.5 Conclusions
233(1)
Acknowledgments
234(1)
References
234(1)
Appendix A: Derivation of Inflow Equation for Wells with Radial Fractures under Pseudo-Steady State Flow Conditions
235(8)
Part 5: Environmental Issues of Hydraulic Fracturing 243(60)
Introduction
243(2)
References
245(2)
12 The Role of Human Factors Considerations and Safety Culture in the Safety of Hydraulic Fracturing (Fracking)
247(24)
Jamie Heinecke
Nima Jabbari
Najmedin Meshkati
12.1 Introduction
248(2)
12.2 Benefits of Hydraulic Fracturing
250(1)
12.3 Common Criticisms
250(2)
12.4 Different Steps of Hydraulic Fracturing and Proposed Human Factors Considerations
252(2)
12.5 Hydraulic Fracturing Process: Drilling
254(3)
12.6 Hydraulic Fracturing Process: Fluid Injection
257(1)
12.7 Fracking Fluid
258(1)
12.8 Wastewater
258(1)
12.9 Human Factors and Safety Culture Considerations
259(4)
12.9.1 Human Factors
259(1)
12.9.1.1 Microergonomics
260(1)
12.9.1.2 Macroergonomics
260(1)
12.9.2 Safety Culture
261(2)
12.10 Examples of Recent Incidents
263(2)
12.11 Conclusion and Recommendations
265(1)
Acknowledgment
266(1)
References
266(5)
13 Flowback of Fracturing Fluids with Upgraded Visualization of Hydraulic Fractures and Its Implications on Overall Well Performance
271(14)
Khush Desai
Fred Aminzadeh
13.1 Introduction
272(1)
13.2 Assumptions
272(1)
13.3 Upgraded Visualization of Hydraulic Fracturing
273(2)
13.3.1 Concept
273(1)
13.3.2 Results
274(1)
13.4 Reasons for Partial Flowback
275(3)
13.4.1 Fracture Modelling
275(1)
13.4.2 Depth of Penetration
276(1)
13.4.3 Closing of Fractures
277(1)
13.4.4 Chemical Interaction of Fracturing Fluids
277(1)
13.5 Impact of Parameters under Control
278(1)
13.6 Loss in Incremental Oil Production
279(1)
13.7 Conclusions
280(1)
13.8 Limitations
281(1)
References
281(1)
Appendix A
282(3)
14 Assessing the Groundwater Contamination Potential from a Well in a Hydraulic Fracturing Operation
285(18)
Nima Jabbari
Fred Aminzadeh
Felipe P.J. de Barros
14.1 Introduction
286(2)
14.2 Risk Pathways to the Shallow Groundwater
288(1)
14.3 Problem Statement
289(1)
14.4 Mathematical Formulation
290(1)
14.5 Hypothetical Case Description and the Numerical Method
291(3)
14.6 Results and Discussion
294(3)
14.7 Conclusion
297(1)
References
298(5)
Index 303
Fred Aminzadeh, PhD, is a world-renowned academic and engineer in the energy industry. A professor at the University of Southern California, he has extensive experience not only in oil and gas, but also in geothermal energy and other areas of energy. He has been a co-author on multiple books and has authored numerous papers that have been well-received by academics and industry experts alike. He is the editor of the journal, The Journal of Sustainable Energy Engineering, formerly of Scrivener Publishing, and he is currently editing the series, Sustainable Energy Engineering, for the Wiley-Scrivener imprint.