Muutke küpsiste eelistusi

E-raamat: Hydraulically Actuated Hexapod Robots: Design, Implementation and Control

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likely resemble hydraulically driven hexapod robots like the ones described in this book – no longer science fiction but now a reality.

This book describes control challenges in walking robots, focusing on hydraulically driven hexapod robots weighing more than 2,000 kg. Covers design, implementation, modeling, navigation and control, fully autonomous walking and the future of walking robots.
1 Introduction
1(18)
1.1 Introduction
1(3)
1.2 Walking "Machines" or Walking "Robots"?
4(1)
1.3 "Biologically Inspired" Designs and Development of Walking Robots
5(1)
1.4 Classification of Walking Robots
6(2)
1.5 Hexapod Walking Robots: A Popular Walking Machine for Field Robotics Applications
8(7)
1.6 Walking Robot Terminology
15(1)
1.7 Challenges of Navigation and Locomotion Control of Hexapod Walking Robot for the Field Robotics Applications
16(3)
References
17(2)
2 Historical and Modern Perspective of Walking Robots
19(22)
2.1 Introduction
19(2)
2.2 Historical Perspective of Walking Robots
21(16)
2.2.1 Emergence of Artificial Legged Locomotion from Ancient Civilizations: Imagination, Ideas, and Implementations
21(6)
2.2.2 Evolution of Modern Walking Robots
27(10)
2.3 Modern and Future Perspective of Walking Robot Research
37(4)
References
39(2)
3 Design and Optimization of Hydraulically Actuated Hexapod Robot COMET-IV
41(44)
3.1 System Construction
42(11)
3.1.1 Conceptual Design
42(4)
3.1.2 Overall Mechanical System Design
46(7)
3.2 Building a Single-Leg Model
53(2)
3.2.1 Leg Mechanism
53(2)
3.2.2 Observations from the Evaluation Experiments
55(1)
3.3 Kinematic Analysis
55(9)
3.3.1 Forward Kinematics, Inverse Kinematics
55(1)
3.3.2 The Jacobian
56(5)
3.3.3 Manipulability
61(3)
3.4 Analysis of the Foot Mechanism
64(7)
3.4.1 Definition of the Required Cylinder Force and Torque
64(1)
3.4.2 Jacobian Analysis
65(1)
3.4.3 Analysis Results
65(4)
3.4.4 Definition of the Necessary Workspace
69(1)
3.4.5 Defining the Necessary Flow Rate and Walking Speed
70(1)
3.5 Optimization of the Leg Mechanism
71(7)
3.5.1 Optimization Process
71(3)
3.5.2 Optimization Results
74(4)
3.6 Exterior View of the Completed COMET-IV
78(7)
References
83(2)
4 Kinematics, Navigation, and Path Planning of Hexapod Robot
85(20)
4.1 COMET-IV Kinematics (Inverse/Direct) and Force Sensing
85(4)
4.2 COMET-IV Center of Mass/Gravity
89(2)
4.3 Navigation and Path Planning Issues in Field Robotics Applications
91(2)
4.4 Movement Control Methods
93(4)
4.5 Terrain Adaptive Foot Trajectory Using Force Threshold-Based Method
97(8)
References
103(2)
5 Position-Based Robust Locomotion Control of Hexapod Robot
105(36)
5.1 Introduction
105(5)
5.1.1 Locomotion Control Techniques
106(1)
5.1.2 Centralized Control
107(1)
5.1.3 Distributed Control
108(2)
5.2 Challenges of Position-Based Locomotion Control of Hydraulically Actuated Hexapod Robot
110(1)
5.3 Independent Joint Control-Based Locomotion Control of Hydraulically Actuated Hexapod Robot
111(1)
5.4 Robust Control Techniques for Locomotion Control of Hydraulically Actuated Hexapod Robot
112(29)
5.4.1 Technical Description of COMET-III and Its Model Identification
113(4)
5.4.2 Model Reference Sliding Mode Control
117(5)
5.4.3 Preview Sliding Mode Control
122(6)
5.4.4 Robust Adaptive Fuzzy Logic Control-Based Intelligent Control for Locomotion Control of Hydraulically Actuated Hexapod Robot
128(10)
References
138(3)
6 Force-Based Locomotion Control of Hexapod Robot
141(28)
6.1 Position-Based Force Control for Hydraulically Driven Hexapod Robot Walking on Rough Terrain
141(15)
6.1.1 Case Study: Hydraulically Driven Hexapod Robot Walking on Rough Terrain Issue
141(4)
6.1.2 Compliant Control Using Pull-Back Method and Logical Attitude-Level Terrain Changes Switching for ETT Module
145(7)
6.1.3 Experiment and Verifications
152(4)
6.2 Impedance Control for Hydraulically Driven Hexapod Robot
156(13)
6.2.1 Case Study: Hydraulically Driven Hexapod Robot Walking on Soft Terrain Issue
157(2)
6.2.2 Impedance Control Schemes for Hexapod Robot
159(3)
6.2.3 Experiment and Verification
162(4)
References
166(3)
7 Impedance Control and Its Adaptive for Hexapod Robot
169(30)
7.1 Optimization of Impedance Control Using Virtual Forces from the Body's Moment of Inertia
169(10)
7.1.1 Experiment and Verification
173(6)
7.2 Optimization of Impedance Control by Self-Tuning Stiffness Using Logical Body's Attitude Control
179(6)
7.2.1 Experiment and Verification
181(4)
7.3 Impedance Forces Input Optimization Using Fuzzy Logic Control
185(14)
7.3.1 Experiment and Verification
189(7)
References
196(3)
8 Teleoperated Locomotion Control of Hexapod Robot
199(38)
8.1 Movement Control Methods
200(1)
8.2 COMET-IV System Configuration
201(2)
8.3 OmniDirectional Gait Control Procedure
203(2)
8.4 Teleoperation Assistant System
205(3)
8.5 Ambient Environmental Image View of Robot
208(4)
8.6 Robot Animation Using 3D Geometric Models and Sensor Data
212(2)
8.7 Experiment
214(2)
8.8 COMET-IV 3D Simulator Modeling
216(13)
8.8.1 Walking Trajectory Modeling
217(4)
8.8.2 Environment Modeling
221(2)
8.8.3 Control System Modeling
223(3)
8.8.4 3D Geometric Modeling
226(3)
8.9 Modeling Verification
229(4)
8.10 Summary
233(4)
References
233(4)
9 Fully Autonomous Locomotion Control of Hexapod Robot with LRF
237(26)
9.1 Advantages of Hexapod Robot and Typical Quadruped Robot
237(2)
9.2 Environment Modeling
239(5)
9.2.1 Laser Range Finder
240(1)
9.2.2 Grid-Based Environment Modeling
241(2)
9.2.3 Path Planning
243(1)
9.3 Locomotion Strategies in Stochastic Environment
244(4)
9.3.1 Crossing Over and Ascending an Obstacle or a Step
244(2)
9.3.2 Descending a Cliff
246(2)
9.4 Experimental Results
248(8)
9.4.1 Crossing Over an Obstacle: Results and Discussion
248(3)
9.4.2 Crossing Over an Obstacle Longer than 0.6 m: Results and Discussion
251(2)
9.4.3 Ascending and Descending a Cliff: Results and Discussion
253(3)
9.5 Summary
256(7)
References
260(3)
10 Challenges and New Frontiers of Hydraulically Actuated Hexapod Robots
263(8)
10.1 Introduction
263(2)
10.2 Mine Detection and Removal
265(1)
10.3 Rescue and Disaster Management Applications
266(1)
10.4 High-Risk Operations
266(1)
10.5 Construction Application
267(1)
10.6 Cargo Application
267(1)
10.7 Underwater Operation
267(1)
10.8 Forest-Cutting Machine
268(1)
10.9 A Test Bed for Study and Research of Biological Walking
268(1)
10.10 Other Possible Applications of Hydraulically Actuated Hexapod Robot
268(3)
References
269(2)
Index 271