Muutke küpsiste eelistusi

E-raamat: Hydrostatic Transmissions and Actuators: Operation, Modelling and Applications

  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Jul-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118818909
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 103,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Jul-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118818909
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Hydrostatic Transmissions and Actuators takes a pedagogical approach and begins with an overview of the subject, providing basic definitions and introducing fundamental concepts. Hydrostatic transmissions and hydrostatic actuators are then examined in more detail with coverage of pumps and motors, hydrostatic solutions to single-rod actuators, energy management and efficiency and dynamic response. Consideration is also given to current and emerging applications of hydrostatic transmissions and actuators in automobiles, mobile equipment, wind turbines, wave energy harvesting and airplanes. End of chapter exercises and real world industrial examples are included throughout and a companion website hosting a solution manual is also available.

Hydrostatic Transmissions and Actuators is an up to date and comprehensive textbook suitable for courses on fluid power systems and technology, and mechatronics systems design.

Preface xiii
Acknowledgements xvii
About the Companion Website xix
1 Introduction to Power Transmission 1(58)
1.1 Transmission Ratio
1(3)
1.1.1 Generalities
1(2)
1.1.2 Definition
3(1)
1.1.3 Classification
3(1)
1.2 Mechanical Transmissions
4(11)
1.2.1 Gear Trains
4(2)
1.2.2 Gearboxes
6(2)
1.2.3 Efficiency
8(3)
1.2.4 Continuously and Infinitely Variable Transmissions
11(4)
1.3 Hydraulic Transmissions
15(4)
1.4 Hydrostatic Transmissions
19(21)
1.4.1 Operational Principles
19(13)
1.4.2 Formal Definition of Hydrostatic Transmissions
32(2)
1.4.3 Classification of Hydrostatic Transmissions
34(6)
1.4.4 Efficiency Considerations
40(1)
1.5 Hydromechanical Power-Split Transmissions
40(11)
1.5.1 General Classification
41(1)
1.5.2 Transmission Ratio
42(2)
1.5.3 Lockup Point
44(1)
1.5.4 Power Relations
44(7)
1.6 Mechanical and Hydrostatic Actuators
51(5)
1.6.1 Mechanical Actuators
51(1)
1.6.2 Hydrostatic Actuators
52(1)
1.6.3 Hydrostatic Actuation Versus Valve Control
53(2)
1.6.4 Multiple Cylinder Actuators
55(1)
Exercises
56(1)
References
57(2)
2 Fundamentals of Fluid Flows in Hydrostatic Transmissions 59(39)
2.1 Fluid Properties
59(20)
2.1.1 Viscosity
59(5)
2.1.2 Compressibility
64(15)
2.2 Fluid Flow in Hydraulic Circuits
79(15)
2.2.1 Flow Regimes
79(2)
2.2.2 Internal Flow in Conduits
81(4)
2.2.3 Flow Through Orifices
85(2)
2.2.4 Leakage Flow in Pumps and Motors
87(6)
2.2.5 Other Loss Models
93(1)
Exercises
94(2)
References
96(2)
3 Hydrostatic Pumps and Motors 98(68)
3.1 Hydrostatic and Hydrodynamic Pumps and Motors
98(4)
3.2 Hydrostatic Machine Output
102(15)
3.2.1 Average Input—Output Relations
102(2)
3.2.2 Instantaneous Pump Output
104(8)
3.2.3 Instantaneous Motor Output
112(4)
3.2.4 Further Efficiency Considerations
116(1)
3.3 Hydrostatic Pump and Motor Types
117(18)
3.3.1 Radial Piston Pumps and Motors
117(2)
3.3.2 Axial Piston Pumps and Motors
119(9)
3.3.3 Gear Pumps and Motors
128(2)
3.3.4 Vane Pumps and Motors
130(1)
3.3.5 Digital Displacement Pumps and Motors
131(4)
3.4 Energy Losses at Steady-State Operation
135(6)
3.4.1 Energy Balances
135(3)
3.4.2 Overall Efficiencies
138(1)
3.4.3 Simplified Efficiency Equations
138(1)
3.4.4 Efficiency Relations
139(2)
3.5 Modelling Pump and Motor Efficiencies
141(21)
3.5.1 Performance Curves
141(3)
3.5.2 Volumetric Efficiency Modelling
144(10)
3.5.3 Overall Efficiency Modelling
154(6)
3.5.4 Mechanical Efficiency
160(2)
Exercises
162(2)
References
164(2)
4 Basic Hydrostatic Transmission Design 166(41)
4.1 General Considerations
166(2)
4.1.1 Output Speed Control
166(1)
4.1.2 Transmission Losses
167(1)
4.2 Hydrostatic Transmission Efficiency
168(15)
4.2.1 Energy Balance
169(2)
4.2.2 Conduit Efficiency
171(2)
4.2.3 Minor Pressure Losses
173(3)
4.2.4 Practical Application
176(7)
4.3 Transmission Output
183(1)
4.4 Steady-State Design Applications
184(14)
4.4.1 Case Study
1. Fixed-Displacement Motor and Variable-Displacement Pump
185(7)
4.4.2 Case Study
2. Fixed-Displacement Pump and Variable-Displacement Motor
192(6)
4.5 External Leakages and Charge Circuit
198(3)
4.6 Heat Losses and Cooling
201(3)
4.6.1 Sizing of the Heat Exchanger
201(2)
4.6.2 Loop Flushing
203(1)
Exercises
204(1)
References
205(2)
5 Dynamic Analysis of Hydrostatic Transmissions 207(36)
5.1 Introduction
207(12)
5.1.1 Pressure Surges during Transients
208(3)
5.1.2 Mechanical Vibrations and Noise
211(3)
5.1.3 Natural Circuit Oscillations
214(3)
5.1.4 Resonance and Beating
217(2)
5.1.5 Summary
219(1)
5.2 Modelling and Simulation
219(21)
5.2.1 Basic Equations
220(3)
5.2.2 Case Study
1. Purely Inertial Load with a Step Input
223(8)
5.2.3 Case Study
2. Variable Pump Flow
231(9)
Exercises
240(1)
References
241(2)
6 Hydrostatic Actuators 243(40)
6.1 Introductory Concepts
243(4)
6.1.1 Circuit Operational Quadrants
243(1)
6.1.2 Energy Management
244(1)
6.1.3 Cylinder Stiffness
245(1)
6.1.4 Double-Rod and Single-Rod Actuators
245(2)
6.2 Hydrostatic Actuator Circuits
247(28)
6.2.1 Design
1. Dual-Pump, Open-Circuit, Displacement-Controlled Actuator
247(2)
6.2.2 Design
2. Dual-Pump, Closed-Circuit, Displacement-Controlled Actuator
249(2)
6.2.3 Design
3. Dual-Pump Electrohydrostatic Actuator with Accumulators
251(2)
6.2.4 Design
4. Circuit with an Inline Hydraulic Transformer
253(4)
6.2.5 Design
5. Single-Pump Circuit with a Directional Valve
257(3)
6.2.6 Design
6. Single-Pump Circuit with Pilot-Operated Check Valves
260(3)
6.2.7 Design
7. Single-Pump Circuit with Inline Check Valves
263(4)
6.2.8 Design
8. Energy Storage Circuit
267(6)
6.2.9 Design
9. Double-Rod Actuator
273(2)
6.3 Common Pressure Rail and Hydraulic Transformers
275(6)
Exercises
281(1)
References
282(1)
7 Dynamic Analysis of Hydrostatic Actuators 283(24)
7.1 Introduction
283(1)
7.2 Mathematical Model
284(14)
7.2.1 Basic Equations
284(4)
7.2.2 Cylinder Friction
288(6)
7.2.3 Pilot-Operated Check Valves
294(4)
7.3 Case Study
298(6)
7.3.1 Determination of the Pump Flow Period
299(1)
7.3.2 Numerical Simulation
300(4)
Exercises
304(2)
References
306(1)
8 Practical Applications 307(32)
8.1 Infinitely Variable Transmissions in Vehicles
307(3)
8.2 Heavy Mobile Equipment
310(3)
8.3 Hybrid Vehicles
313(10)
8.3.1 Definition
315(1)
8.3.2 Electric Hybrids
315(1)
8.3.3 Hydraulic Hybrids
316(5)
8.3.4 CPR-Based Hybrids
321(2)
8.4 Wind Turbines
323(8)
8.4.1 Asynchronous Generators
324(2)
8.4.2 Synchronous Generators
326(2)
8.4.3 General Aspects of Power Transmission in Wind Turbines
328(1)
8.4.4 Hydrostatic Transmission in Wind Turbines
329(2)
8.5 Wave Energy Extraction
331(3)
8.6 Aeronautical Applications
334(2)
References
336(3)
Appendix A Hydraulic Symbols 339(6)
Appendix B Mathematics Review 345(16)
B.1 The Nabla Operator Oh
345(1)
B.2 Ordinary Differential Equations (ODEs)
346(14)
B.2.1 General Aspects and Definitions for ODEs
347(4)
B.2.2 The Laplace Transform Method
351(9)
References
360(1)
Appendix C Fluid Dynamics Equations 361(18)
C.1 Introduction
361(2)
C.2 Fluid Stresses and Distortion Rates
363(2)
C.3 Differential Fluid Dynamics Equations
365(6)
C.3.1 Conservation of Mass
365(2)
C.3.2 Conservation of Momentum
367(3)
C.3.3 Navier—Stokes Equations in Cylindrical Coordinates
370(1)
C.4 Control Volume Analysis
371(7)
C.4.1 The Reynolds Transport Theorem
371(2)
C.4.2 Mass and Momentum Conservation
373(2)
C.4.3 Conservation of Energy
375(3)
References
378(1)
Index 379
Gustavo Koury Costa graduated in 1992 with a bachelor degree in Mechanical Engineering and has been teaching Fluid Power for 19 years at his current institution. He also holds a Doctorate degree in Computational Fluid Dynamics, having spent one year as a Postdoctoral Fellow at the University of Manitoba Fluid Power and Tele-Robotics Research Laboratory.

Nariman Sepehri is a professor in Mechanical Engineering. He holds five patents and has published over 100 journal articles on various aspects of fluid power, including systems, manipulation, diagnosis and control. His current research focuses on self-healing, energy-efficient and reliable fluid power systems with applications to aircraft, hydraulic tele-manipulators and off-highway equipment. He is a Fellow and has served as Chair of the Fluid Power Systems and Technology Division of the American Society of Mechanical Engineers (ASME). He has served on editorial boards of eight journals including the International Journal of Fluid Power.