Muutke küpsiste eelistusi

E-raamat: Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy

Edited by (Associate Professor in Residence and Principal Investigator, Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 161,07 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It’s primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis.

Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology.

  • Presents the physics and hardware of dissolution dynamic nuclear polarization
  • Explains the behaviour of hyperpolarized carbon-13 agents and how to image them
  • Detailed guidance on experimental design and data interpretation
  • Identifies promising and potential applications of hyperpolarized carbon-13 MR
Contributors xi
Preface xiii
Chapter 1 The physics of dissolution Dynamic Nuclear Polarization
1(28)
Jan Ardenkjaer-Larsen
1.1 Introduction
1(1)
1.2 Polarization, magnetization, sensitivity, and hyperpolarization
2(4)
1.3 Methods of hyperpolarization
6(2)
1.4 Dynamic Nuclear Polarization
8(10)
1.5 The DNP sample: formulation of the imaging agent and the electron paramagnetic agent
18(3)
1.6 Dissolution and relaxation
21(2)
1.7 Conclusion
23(6)
References
24(5)
Chapter 2 Hardware for preparing HP 13C-molecules: from polarizer to patient
29(20)
Adam P. Gaunt
Arnaud Comment
2.1 Requirements for DNP
29(5)
2.2 Monitoring of solid-state 13C polarization
34(1)
2.3 Rapid state change
35(1)
2.4 Preclinical dDNP
35(5)
2.5 Postdissolution
40(2)
2.6 Clinical dDNP
42(2)
2.7 Future developments
44(2)
2.8 Conclusions
46(3)
Acknowledgments
47(1)
References
47(2)
Chapter 3 HP acquisition methods: pulse sequences, reconstruction, and RF coils
49(26)
Jeremy W. Gordon
Jack J. Miller
3.1 Introduction
49(1)
3.2 Hyperpolarized imaging considerations
50(5)
3.3 Pulse sequences and reconstruction
55(9)
3.4 RF coils
64(4)
3.5 Summary
68(7)
References
69(6)
Chapter 4 HP experimental methods: cells and animals
75(18)
Renuka Sriram
4.1 Introduction
75(1)
4.2 Dissolution--What is in it?
76(1)
4.3 Transfer to the magnet--how fast can you run?
77(1)
4.4 Delivery--how much and how to?
78(1)
4.5 Preclinical model systems for testing of hyperpolarized 13C agents
79(8)
4.6 Understanding and interpreting the hyperpolarized signals to shed light on the underlying biochemistry of the pathology
87(6)
Acknowledgments
88(1)
References
88(3)
Further Study
91(2)
Chapter 5 HP agents and biochemical interactions
93(36)
Hikari A. J. Yoshihara
5.1 Introduction
93(2)
5.2 Overview of biological HP agents
95(10)
5.3 Formulation of HP 13C agents for dissolution DNP
105(5)
5.4 Biochemical interactions of HP 13C agents
110(6)
5.5 Summary and conclusion
116(13)
References
118(11)
Chapter 6 Analysis and visualization of hyperpolarized 13C MR data
129(28)
James Bankson
Peder E. Z. Larson
6.1 Data extraction
129(1)
6.2 Data visualization
130(1)
6.3 Kinetic modeling
131(15)
6.4 Model-free metrics
146(3)
6.5 Evaluation of metabolism metrics
149(4)
6.6 Summary
153(4)
References
153(4)
Chapter 7 Integration into cancer studies
157(30)
Pavithra Viswanath
7.1 Metabolic reprogramming is a central hallmark of cancer
157(2)
7.2 Metabolic reprogramming can be monitored to provide precision imaging of cancer
159(1)
7.3 Imaging oncogenic reprogramming of metabolism using HP 13C MRS/I in preclinical cancer models
160(14)
7.4 Imaging oncogenic reprogramming of metabolism using HP 13C MRS/I in the clinic
174(3)
7.5 Conclusions
177(10)
Acknowledgments
177(1)
References
177(10)
Chapter 8 Neurological applications of hyperpolarized 13C MR
187(30)
Myriam M. Chaumeil
8.1 Introduction: an overview of the brain and its metabolism
187(2)
8.2 Neurological applications of HP [ 1-13C]pyruvate
189(10)
8.3 New HP probes for brain applications
199(5)
8.4 Correlation studies for HP 13C data
204(6)
8.5 Conclusion
210(7)
References
211(6)
Chapter 9 Hyperpolarized MR in cardiology: probing the heart of life
217(40)
Jack J. Miller
Justin Lau
Damian Tyler
9.1 Fueling the pump: metabolism and the healthy heart
217(13)
9.2 Quantifying cardiac metabolism with MR
230(10)
9.3 Imaging hyperpolarized metabolism in the heart
240(6)
9.4 Conclusion
246(11)
References
247(10)
Chapter 10 Integration of Hyperpolarized 13C MRI into Liver Studies
257(16)
Cornelius von Morze
Michael A. Ohliger
10.1 Liver imaging: state of the art
257(1)
10.2 Technical challenges of liver HP 13C MRI
258(2)
10.3 Liver metabolic pathways accessible via HP imaging
260(2)
10.4 Target applications of liver HP 13C MRI
262(6)
10.5 Discussion
268(5)
References
268(5)
Index 273
Peder Larson, PhD, is an Associate Professor in Residence and a Principal Investigator in the Department of Radiology and Biomedical Imaging at the University of California, San Francisco. Dr. Larson's research program is primarily centered around developing new MRI scanning and reconstruction technology for improved clinical outcomes

Dr. Peder Larson got his PhD under Dwight Nishimura from the Department of Electrical Engineering at Stanford University on "MRI of Semi-solid Tissues" in 2007. His research interests are in RF pulse design, pulse sequence development, novel imaging strategies, and optimized reconstruction methods for MRI, with an emphasis on applications in Hyperpolarized carbon-13 agents and semi-solid tissue imaging with ultrashort echo time (UTE) methods.