Muutke küpsiste eelistusi

E-raamat: Hyperspectral Image Analysis: Advances in Machine Learning and Signal Processing

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful. 


1 Introduction
1(4)
Saurabh Prasad
Jocelyn Chanussot
2 Machine Learning Methods for Spatial and Temporal Parameter Estimation
5(32)
Alvaro Moreno-Martinez
Maria Piles
Jordi Munoz-Mari
Manuel Campos-Taberner
Jose E. Adsuara
Anna Mateo
Adrian Perez-Suay
Francisco Javier Garcia-Haro
Gustau Camps-Valls
3 Deep Learning for Hyperspectral Image Analysis, Part I: Theory and Algorithms
37(32)
Sebastian Berisha
Farideh Foroozandeh Shahraki
David Mayerich
Saurabh Prasad
4 Deep Learning for Hyperspectral Image Analysis, Part II: Applications to Remote Sensing and Biomedicine
69(48)
Farideh Foroozandeh Shahraki
Leila Saadatifard
Sebastian Berisha
Mahsa Lotfollahi
David Mayerich
Saurabh Prasad
5 Advances in Deep Learning for Hyperspectral Image Analysis---Addressing Challenges Arising in Practical Imaging Scenarios
117(24)
Xiong Zhou
Saurabh Prasad
6 Addressing the Inevitable Imprecision: Multiple Instance Learning for Hyperspectral Image Analysis
141(46)
Changzhe Jiao
Xiaoxiao Du
Alina Zare
7 Supervised, Semi-supervised, and Unsupervised Learning for Hyperspectral Regression
187(46)
Felix M. Riese
Sina Keller
8 Sparsity-Based Methods for Classification
233(26)
Zebin Wu
Yang Xu
Jianjun Liu
9 Multiple Kernel Learning for Hyperspectral Image Classification
259(36)
Tianzhu Liu
Yanfeng Gu
10 Low Dimensional Manifold Model in Hyperspectral Image Reconstruction
295(24)
Wei Zhu
Zuoqiang Shi
Stanley Osher
11 Deep Sparse Band Selection for Hyperspectral Face Recognition
319(32)
Fariborz Taherkhani
Jeremy Dawson
Nasser M. Nasrabadi
12 Detection of Large-Scale and Anomalous Changes
351(26)
Amanda Ziemann
Stefania Matteoli
13 Recent Advances in Hyperspectral Unmixing Using Sparse Techniques and Deep Learning
377(30)
Shaoquan Zhang
Yuanchao Su
Xiang Xu
Jun Li
Chengzhi Deng
Antonio Plaza
14 Hyperspectral-Multispectral Image Fusion Enhancement Based on Deep Learning
407(28)
Jingxiang Yang
Yong-Qiang Zhao
Jonathan Cheung-Wai Chan
15 Automatic Target Detection for Sparse Hyperspectral Images
435(28)
Ahmad W. Bitar
Jean-Philippe Ovarlez
Loong-Fah Cheong
Ali Chehab
Index 463
Dr. Saurabh Prasad is an Associate Professor at the Department of Electrical and Computer Engineering at the University of Houston, TX, USA.







Dr. Jocelyn Chanussot is a Professor in the Signal and Images Department at Grenoble Institute of Technology, France.