Muutke küpsiste eelistusi
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since 1985, scientists have been documenting a hypoxic zone in the Gulf of Mexico each year. The hypoxic zone, an area of low dissolved oxygen that cannot s- port marine life, generally manifests itself in the spring. Since marine species either die or ee the hypoxic zone, the spread of hypoxia reduces the available habitat for marine species, which are important for the ecosystem as well as commercial and recreational shing in the Gulf. Since 2001, the hypoxic zone has averaged 2 1 16,500 km during its peak summer months , an area slightly larger than the state 2 2 of Connecticut, and ranged from a low of 8,500 km to a high of 22,000 km . To address the hypoxia problem, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (or Task Force) was formed to bring together represen- tives from federal agencies, states, and tribes to consider options for responding to hypoxia. The Task Force asked the White House Of ce of Science and Technology Policy to conduct a scienti c assessment of the causes and consequences of Gulf hypoxia through its Committee on Environment and Natural Resources (CENR).

1 Introduction 1
1.1 Hypoxia and the Northern Gulf of Mexico — A Brief Overview
1
1.2 Science and Management Goals for Reducing Hypoxia
3
1.3 Hypoxia Study Group
4
1.4 The Study Group's Approach
7
2 Characterization of Hypoxia 9
2.1 Historical Patterns and Evidence for Hypoxia on the Shelf
9
2.2 The Physical Context
12
2.2.1 Oxygen Budget: General Considerations
12
2.2.2 Vertical Mixing as a Function of Stratification and Vertical Shear
13
2.2.3 Changes in Mississippi River Hydrology and Their Effects on Vertical Mixing
15
2.2.4 Zones of Hypoxia Controls
18
2.2.5 Shelf Circulation: Local Versus Regional
20
2.3 Role of N and P in Controlling Primary Production
23
2.3.1 Nitrogen and Phosphorus Fluxes to the NGOM Background
23
2.3.2 N and P Limitation in Different Shelf Zones and Linkages Between High Primary Production Inshore and the Hypoxic Regions Farther Offshore
24
2.4 Other Limiting Factors and the Role of Si
29
2.5 Sources of Organic Matter to the Hypoxic Zone
31
2.5.1 Sources of Organic Matter to NGOM: Post 2000 Integrated Assessment
33
2.5.2 Advances in Organic Matter Understanding: Characterization and Processes
34
2.5.3 Synthesis Efforts Regarding Organic Matter Sources
37
2.6 Denitrification, P Burial, and Nutrient Recycling
38
2.7 Possible Regime Shift in the Gulf of Mexico
41
2.8 Single Versus Dual Nutrient Removal Strategies
44
2.9 Current State of Forecasting
46
3 Nutrient Fate, Transport, and Sources 51
3.1 Temporal Characteristics of Streamflow and Nutrient Flux
51
3.1.1 MARB Annual and Seasonal Fluxes
56
3.1.2 Subbasin Annual and Seasonal Flux
65
3.2 Mass Balance of Nutrients
76
3.2.1 Cropping Patterns
76
3.2.2 Nonpoint Sources
77
3.2.3 Point Sources
84
3.3 Nutrient Transport Processes
87
3.3.1 Aquatic Processes
87
3.3.2 Freshwater Wetlands
93
3.3.3 Nutrient Sources and Sinks in Coastal Wetlands
94
3.4 Ability to Route and Predict Nutrient Delivery to the Gulf
96
3.4.1 SPARROW Model
97
3.4.2 SWAT Model
103
3.4.3 IBIS/THMB Model
104
3.4.4 Discussion and Comparison of Models
106
3.4.5 Targeting
106
3.4.6 Model Uncertainty
107
4 Scientific Basis for Goals and Management Options 111
4.1 Adaptive Management
111
4.2 Setting Targets for Nitrogen and Phosphorus Reduction
115
4.3 Protecting Water Quality and Social Welfare in the Basin
120
4.3.1 Assessment and Review of the Cost Estimates from the CENR Integrated Assessment
121
4.3.2 Other Large-Scale Integrated Economic and Biophysical Models for Agricultural Nonpoint Sources
125
4.3.3 Research Assessing the Basin-Wide Co-benefits
128
4.3.4 Principles of Landscape Design
129
4.4 Cost-Effective Approaches for Nonpoint Source Control
133
4.4.1 Voluntary Programs – Without Economic Incentives
134
4.4.2 Existing Agricultural Conservation Programs
135
4.4.3 Emissions and Water Quality Trading Programs
137
4.4.4 Agricultural Subsidies and Conservation Compliance Provisions
138
4.4.5 Taxes
140
4.4.6 Eco-labeling and Consumer Driven Demand
141
4.5 Options for Managing Nutrients, Co-benefits, and Consequences
143
4.5.1 Agricultural Drainage
143
4.5.2 Freshwater Wetlands
146
4.5.3 Conservation Buffers
151
4.5.4 Cropping Systems
155
4.5.5 Animal Production Systems
158
4.5.6 In-Field Nutrient Management
164
4.5.7 Effective Actions for Other Nonpoint Sources
183
4.5.8 Most Effective Actions for Industrial and Municipal Sources
186
4.5.9 Ethanol and Water Quality in the MARB
190
4.5.10 Integrating Conservation Options
195
5 Summary of Findings and Recommendations 205
5.1 Characterization of Hypoxia
205
5.2 Nutrient Fate, Transport, and Sources
207
5.3 Goals and Management Options
209
5.4 Conclusion
211
Appendices 215
References 239
Subject Index 277