Muutke küpsiste eelistusi

E-raamat: Identifying and Minimizing Measurement Invariance among Intersectional Groups: The Alignment Method Applied to Multi-category Items

(University of Pittsburgh), (University of Illinois, Chicago), (University of Iowa), (Northern Illinois University)
  • Formaat - EPUB+DRM
  • Hind: 21,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This Element demonstrates how and why the alignment method can advance measurement fairness in developmental science. It explains its application to multi-category items in an accessible way, offering sample code and demonstrating an R package that facilitates interpretation of such items' multiple thresholds. It features the implications for group mean differences when differences in the thresholds between categories are ignored because items are treated as continuous, using an example of intersectional groups defined by assigned sex and race/ethnicity. It demonstrates the interpretation of item-level partial non-invariance results and their implications for group-level differences and encourages substantive theorizing regarding measurement fairness.

This Element demonstrates how and why the alignment method can advance measurement fairness in developmental science. It explains its application to multi-category items in an accessible way, offering sample code and demonstrating an R package that facilitates interpretation of such items' multiple thresholds.

Muu info

This Element demonstrates how and why the alignment method can advance measurement.
1. Introduction;
2. Formal Presentation of Psychometric Models;
3. Empirical Example;
4. Discussion.