Foreword |
|
xi | (2) |
Preface |
|
xiii | |
|
|
1 | (12) |
|
1.1 Scalar Images in Practice |
|
|
1 | (4) |
|
1.2 Syntax versus Semantics |
|
|
5 | (1) |
|
1.3 Synthesis versus Analysis |
|
|
6 | (2) |
|
1.4 Image Analysis a Science? |
|
|
8 | (2) |
|
|
10 | (3) |
|
|
13 | (26) |
|
2.1 A Conventional Representation of Images |
|
|
13 | (3) |
|
2.2 Towards an Improved Representation |
|
|
16 | (11) |
|
2.2.1 Device Space as the Dual of State Space |
|
|
17 | (4) |
|
2.2.2 State Space as the Dual of Device Space: Distributions |
|
|
21 | (6) |
|
2.2.2.1 XXX (def =) D (XXX) |
|
|
23 | (3) |
|
2.2.2.2 XXX (def =) E (XXX) |
|
|
26 | (1) |
|
2.2.2.3 XXX (def =) S (IR(n)) |
|
|
26 | (1) |
|
2.3 More on the Theory of Schwartz |
|
|
27 | (8) |
|
|
35 | (1) |
|
|
36 | (3) |
|
3 Local Samples and Images |
|
|
39 | (50) |
|
|
40 | (2) |
|
3.2 Covariance versus Invariance |
|
|
42 | (3) |
|
|
45 | (2) |
|
3.3.1 XXX Linearisation from an Abstract Viewpoint |
|
|
46 | (1) |
|
|
47 | (3) |
|
|
50 | (1) |
|
3.6 Static versus Dynamic Representations |
|
|
51 | (1) |
|
3.7 The Newtonian Spacetime Model |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
57 | (6) |
|
3.10 Differential Operators |
|
|
63 | (2) |
|
|
65 | (3) |
|
3.12 Discretisation Schemes |
|
|
68 | (4) |
|
3.13 Summary and Discussion |
|
|
72 | (11) |
|
|
83 | (6) |
|
4 The Scale-Space Paradigm |
|
|
89 | (44) |
|
4.1 The Concept of Scale and Some Analogies |
|
|
89 | (11) |
|
4.1.1 XXX Scale and Brownian Motion: Einstein's Argument |
|
|
92 | (2) |
|
4.1.2 XXX Scale and Brownian Motion: Functional Intergration |
|
|
94 | (4) |
|
4.1.3 XXX Scale and Regularisation |
|
|
98 | (1) |
|
4.1.4 XXX Scale and Entropy |
|
|
99 | (1) |
|
4.2 The Multiscale Local Jet |
|
|
100 | (8) |
|
|
108 | (10) |
|
|
109 | (5) |
|
4.3.2 The "Specious Present": Real-Time Sampling |
|
|
114 | (4) |
|
4.3.3 Relation to "Classical" Scale-Space |
|
|
118 | (1) |
|
4.4 Summary and Discussion |
|
|
118 | (9) |
|
|
127 | (6) |
|
|
133 | (42) |
|
5.1 Groups and Invariants |
|
|
134 | (2) |
|
|
136 | (15) |
|
5.2.1 The Euclidean Metric |
|
|
137 | (2) |
|
|
139 | (2) |
|
5.2.3 Tensors on a Riemannian Manifold |
|
|
141 | (3) |
|
5.2.4 Covariant Derivatives |
|
|
144 | (3) |
|
5.2.5 XXX Tensors on a Curved Manifold |
|
|
147 | (1) |
|
5.2.6 The Levi-Civita Tensor |
|
|
148 | (1) |
|
5.2.7 Relative Tensors and Pseudo Tensors |
|
|
149 | (2) |
|
5.3 Differential Invariants |
|
|
151 | (20) |
|
5.3.1 Construction of Differential Invariants |
|
|
151 | (5) |
|
5.3.2 Complete Irreducible Invariants |
|
|
156 | (3) |
|
|
159 | (2) |
|
5.3.4 Geometric or Grey-Scale Invariants |
|
|
161 | (10) |
|
|
171 | (4) |
|
|
175 | (30) |
|
6.1 Towards an Operational Definition of Optic Flow |
|
|
176 | (3) |
|
6.1.1 The "Aperture Problem" |
|
|
177 | (2) |
|
6.1.2 Computational Problems |
|
|
179 | (1) |
|
6.2 The Optic Flow Constraint Equation |
|
|
179 | (4) |
|
6.3 Computational Model for Solving the OFCE |
|
|
183 | (3) |
|
|
186 | (6) |
|
6.4.1 Zeroth, First, and Second Order Systems |
|
|
186 | (1) |
|
6.4.2 Simulation and Verification |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
6.4.2.4 XXX Conceptual Comparison with Similar Methods |
|
|
190 | (2) |
|
6.5 Summary and Discussion |
|
|
192 | (10) |
|
|
202 | (3) |
|
A Geometry and Tensor Calculus |
|
|
205 | (14) |
|
|
205 | (1) |
|
|
206 | (13) |
|
|
206 | (2) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (5) |
|
A.2.7 Push Forward, Pull Back, Derivative Map |
|
|
217 | (2) |
|
B The Filters XXX(p1...pl)(XXX1...XXXk) |
|
|
219 | (4) |
|
C Proof of Proposition 5.4 |
|
|
223 | (2) |
|
D Proof of Proposition 5.5 |
|
|
225 | (2) |
|
D.1 Irreducible System for {L(ij)} |
|
|
225 | (1) |
|
D.2 Irreducible System for {L, L(i), L(ij)} |
|
|
226 | (1) |
Solutions to Problems |
|
227 | (10) |
|
|
237 | (2) |
Glossary |
|
239 | (6) |
Bibliography |
|
245 | (14) |
Index |
|
259 | |