About the editors |
|
xi | |
Preface |
|
xiii | |
|
1 UAV-CPSs as a test bed for new technologies and a primer to Industry 5.0 |
|
|
1 | (22) |
|
|
|
|
|
|
|
|
|
|
|
2 | (3) |
|
|
5 | (2) |
|
1.3 Collective UAV learning |
|
|
7 | (1) |
|
1.4 Human computation, crowdsourcing and call centres |
|
|
8 | (1) |
|
1.5 Open-source and open-access resources |
|
|
8 | (2) |
|
1.6 Challenges and future directions |
|
|
10 | (3) |
|
|
13 | (1) |
|
|
13 | (10) |
|
2 UAS human factors and human-machine interface design |
|
|
23 | (26) |
|
|
|
|
|
23 | (3) |
|
2.2 UAS HMI functionalities |
|
|
26 | (3) |
|
2.2.2 Reconfigurable displays |
|
|
28 | (1) |
|
|
28 | (1) |
|
2.2.2 Mission planning and management |
|
|
28 | (1) |
|
2.2.2 Multi-platform coordination |
|
|
28 | (1) |
|
|
29 | (4) |
|
2.4 Human factors program |
|
|
33 | (11) |
|
2.4.4 Requirements definition, capture and refinement |
|
|
36 | (2) |
|
|
38 | (1) |
|
2.4.4 Hierarchal task analysis |
|
|
38 | (1) |
|
2.4.4 Cognitive task analysis |
|
|
39 | (1) |
|
2.4.4 Critical task analysis |
|
|
39 | (1) |
|
2.4.4 Operational sequence diagram |
|
|
40 | (1) |
|
2.4.4 Systems design and development |
|
|
41 | (1) |
|
|
42 | (1) |
|
2.4.4 Verification and validation |
|
|
43 | (1) |
|
|
44 | (2) |
|
|
46 | (1) |
|
|
46 | (3) |
|
3 Open-source software (OSS) and hardware (OSH) in UAVs |
|
|
49 | (18) |
|
|
|
|
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (4) |
|
3.4 Universal messaging protocol |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
57 | (2) |
|
3.7 Operator information and communication |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
61 | (3) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
3.9.9 Crowd-sourced data in UAV-CPSs |
|
|
63 | (1) |
|
3.9.9 Control of UAV swarms |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (3) |
|
4 Image transmission in UAV MIMO IWB-OSTBC system over Rayleigh channel using multiple description coding (MDC) |
|
|
67 | (24) |
|
|
|
|
|
|
|
|
|
67 | (5) |
|
4.1.1 The efficiency of the flat Rayleigh fading channel |
|
|
72 | (1) |
|
4.2 Multiple description coding |
|
|
72 | (2) |
|
4.3 Multiple input-multiple output |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (5) |
|
4.6 Discussion and future trends |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
85 | (6) |
|
5 Image database of low-altitude UAV flights with flight condition-logged for photogrammetry, remote sensing, and computer vision |
|
|
91 | (22) |
|
Helosman Valente de Figueiredo |
|
|
|
|
|
|
|
92 | (2) |
|
5.1.1 Image processing system for UAVs |
|
|
92 | (2) |
|
5.2 The aerial image database framework |
|
|
94 | (1) |
|
5.2.2 Database requirements |
|
|
94 | (1) |
|
|
94 | (1) |
|
5.3 Image capture process |
|
|
95 | (3) |
|
|
98 | (2) |
|
|
98 | (2) |
|
5.5 Use of the image database |
|
|
100 | (6) |
|
|
100 | (3) |
|
5.5.5 Development of CV algorithms |
|
|
103 | (3) |
|
5.6 Conclusion and future works |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (6) |
|
6 Communications requirements, video streaming, communications links and networked UAVs |
|
|
113 | (20) |
|
|
|
|
|
|
|
|
|
|
|
114 | (1) |
|
6.2 Flying Ad-hoc Networks |
|
|
114 | (1) |
|
|
115 | (4) |
|
6.4 FANET: streaming and surveillance |
|
|
119 | (2) |
|
6.5 Discussion and future trends |
|
|
121 | (7) |
|
6.5.5 FNs' placement search algorithms |
|
|
121 | (1) |
|
6.5.5 Event detection and video quality selection algorithms |
|
|
122 | (1) |
|
6.5.5 Onboard video management (UAV) |
|
|
123 | (1) |
|
6.5.5 Video-rate adaptation for the fleet platform |
|
|
123 | (1) |
|
|
123 | (1) |
|
6.5.5 Data collection and presentation |
|
|
124 | (1) |
|
6.5.5 Software-Defined Networking |
|
|
124 | (1) |
|
6.5.5 Network Function Virtualisation |
|
|
125 | (1) |
|
6.5.5 Data Gathering versus Energy Harvesting |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
128 | (5) |
|
7 Multispectral vs hyperspectral imaging for unmanned aerial vehicles: current and prospective state of affairs |
|
|
133 | (24) |
|
|
|
|
|
|
|
133 | (3) |
|
7.2 UAV imaging architecture and components |
|
|
136 | (2) |
|
7.2.2 Future scope for UAV |
|
|
138 | (1) |
|
7.3 Multispectral vs hyperspectral imaging instruments |
|
|
138 | (3) |
|
7.3.3 Multispectral imaging |
|
|
138 | (2) |
|
7.3.3 Hyperspectral imaging |
|
|
140 | (1) |
|
7.3.3 Satellite imaging vs UAV imaging |
|
|
140 | (1) |
|
7.4 UAV image processing workflow |
|
|
141 | (3) |
|
7.4.4 Atmospheric correction |
|
|
142 | (1) |
|
7.4.4 Spectral influence mapping |
|
|
142 | (1) |
|
7.4.4 Dimensionality reduction |
|
|
143 | (1) |
|
7.4.4 Computational tasks |
|
|
143 | (1) |
|
7.5 Data processing toolkits for spatial data |
|
|
144 | (1) |
|
7.6 UAV open data sets for research - multispectral and hyperspectral |
|
|
144 | (3) |
|
7.7 Applications of MSI and HSI UAV imaging |
|
|
147 | (1) |
|
7.7.7 Agriculture monitoring |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
7.7.7 Defence applications |
|
|
148 | (1) |
|
7.7.7 Environmental monitoring |
|
|
148 | (1) |
|
7.7.7 Other commercial uses |
|
|
148 | (1) |
|
7.8 Conclusion and future scope |
|
|
148 | (2) |
|
|
150 | (7) |
|
8 Aerial imaging and reconstruction of infrastructures by UAVs |
|
|
157 | (20) |
|
|
|
|
|
|
|
157 | (1) |
|
|
158 | (2) |
|
8.3 Visual sensors and mission planner |
|
|
160 | (2) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (2) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (4) |
|
|
164 | (2) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (3) |
|
|
168 | (1) |
|
|
168 | (2) |
|
|
170 | (1) |
|
8.6.6 Underground scenario |
|
|
171 | (1) |
|
|
171 | (2) |
|
|
173 | (1) |
|
|
173 | (4) |
|
9 Deep learning as an alternative to super-resolution imaging in UAV systems |
|
|
177 | (38) |
|
|
|
|
|
|
|
177 | (1) |
|
9.2 The super-resolution model |
|
|
178 | (7) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (2) |
|
9.3 Experiments and results |
|
|
185 | (1) |
|
9.3.3 Peak signal-to-noise ratio |
|
|
186 | (1) |
|
9.4 Critical issues in SR deployment in UAV-CPSs |
|
|
186 | (13) |
|
|
186 | (2) |
|
9.4.4 Cloud computing services |
|
|
188 | (1) |
|
9.4.4 Image acquisition hardware limitations |
|
|
188 | (1) |
|
|
189 | (1) |
|
9.4.4 Efficient metrics and other evaluation strategies |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
9.4.4 Novel architectures |
|
|
193 | (2) |
|
|
195 | (2) |
|
9.4.4 Deep learning and computational intelligence |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (16) |
|
10 Quality of experience (QoE) and quality of service (QoS) in UAV systems |
|
|
215 | (32) |
|
|
|
|
|
|
|
|
|
216 | (2) |
|
10.1.1 Airborne network from a CPS perspective |
|
|
217 | (1) |
|
|
218 | (8) |
|
10.2.2 Parameters that impact QoS/QoE |
|
|
219 | (1) |
|
10.2.2 Impact of cloud distance on QoS/QoE |
|
|
220 | (1) |
|
10.2.2 QoS/QoE monitoring framework in UAV-CPSs |
|
|
220 | (2) |
|
10.2.2 Application-level management |
|
|
222 | (1) |
|
10.2.2 Network-level management |
|
|
223 | (1) |
|
10.2.2 Cloud distance management |
|
|
223 | (1) |
|
10.2.2 QoS/QoE service-level management |
|
|
223 | (1) |
|
10.2.2 QoS/QoE metrics in UAV-CPSs |
|
|
223 | (1) |
|
10.2.2 Mapping of QoS to QoE |
|
|
224 | (1) |
|
10.2.2 Subjective vs objective measurement |
|
|
224 | (1) |
|
10.2.2 Tools to measure QoS/QoE |
|
|
225 | (1) |
|
|
226 | (2) |
|
10.3.3 Social networks, gaming and human-machine interfaces |
|
|
226 | (1) |
|
|
227 | (1) |
|
10.3.3 Electric power grid and energy systems |
|
|
227 | (1) |
|
10.3.3 Networking systems |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (4) |
|
10.4.4 Application scenario 1: UAV-CPSs in traffic congestion management |
|
|
228 | (3) |
|
10.4.4 Application scenario 2: congestion and accident avoidance using intelligent vehicle systems |
|
|
231 | (1) |
|
10.5 Future and open challenges |
|
|
232 | (5) |
|
10.5.5 Modelling and design |
|
|
232 | (1) |
|
10.5.5 Collaborative services |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (1) |
|
10.5.5 Flying ad hoc networks |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (9) |
|
|
247 | (2) |
|
|
|
|
|
Index |
|
249 | |