1 Introduction |
|
1 | (34) |
|
1.1 Definition of Water Shortage |
|
|
1 | (1) |
|
|
2 | (26) |
|
|
2 | (9) |
|
|
11 | (9) |
|
|
20 | (7) |
|
1.2.4 Mismanagement of Available Water Resources |
|
|
27 | (1) |
|
1.3 Objective of the Present Study |
|
|
28 | (2) |
|
1.3.1 To Develop a Weighted Cognitive Indicator for Representing Status of the Water Shortage |
|
|
29 | (1) |
|
1.3.2 To Identify the Priorities of the Related Parameters of Water Availability |
|
|
30 | (1) |
|
|
30 | (3) |
|
|
31 | (1) |
|
1.4.2 Artificial Neural Network |
|
|
32 | (1) |
|
1.4.3 Validation of the Indicators by Sensitivity Analysis |
|
|
32 | (1) |
|
1.4.4 Application and Validation of the Indicator with Respect to Climate Change Scenarios in Three Different Study Areas |
|
|
32 | (1) |
|
|
33 | (2) |
2 Multi Criteria Decision Making |
|
35 | (14) |
|
|
35 | (1) |
|
2.2 Steps of Decision Making |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
2.4.1 Compensatory Method |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (8) |
|
2.5.1 Analytical Hierarchal Process (AHP) |
|
|
38 | (4) |
|
2.5.2 Fuzzy Logic Decision Making (FLDM) |
|
|
42 | (4) |
|
|
46 | (1) |
|
|
46 | (3) |
3 Artificial Neural Network |
|
49 | (6) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (2) |
|
|
52 | (1) |
|
3.5.2 Water Supply System |
|
|
52 | (1) |
|
3.5.3 Landuse and Landcover Change |
|
|
53 | (1) |
|
3.5.4 Groundwater Quality |
|
|
53 | (1) |
|
|
54 | (1) |
4 Climate Change and Climate Models |
|
55 | (12) |
|
|
55 | (6) |
|
|
56 | (1) |
|
|
57 | (4) |
|
|
61 | (5) |
|
|
61 | (1) |
|
|
61 | (3) |
|
4.2.3 Intergovernmental Panel on Climate Change |
|
|
64 | (2) |
|
|
66 | (1) |
5 Detail Methodology |
|
67 | (12) |
|
|
67 | (5) |
|
5.1.1 Selection of Criteria |
|
|
68 | (2) |
|
5.1.2 Selection of Alternative |
|
|
70 | (1) |
|
5.1.3 Aggregation Methods |
|
|
70 | (1) |
|
5.1.4 Determination of Priority Values |
|
|
71 | (1) |
|
5.2 Water Limitation Index |
|
|
72 | (1) |
|
|
72 | (2) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
5.3.4 Performance Metrics |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (5) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (2) |
6 Results and Discussions |
|
79 | (16) |
|
6.1 Results from MCDM Applications |
|
|
80 | (1) |
|
6.2 Results from ANN Applications |
|
|
80 | (4) |
|
6.3 Results from the Sensitivity Analysis |
|
|
84 | (1) |
|
|
85 | (7) |
|
|
92 | (3) |
7 Conclusion |
|
95 | |
|
|
96 | (1) |
|
|
97 | (1) |
|
7.2.1 Source of Abstraction |
|
|
97 | (1) |
|
|
97 | (1) |
|
7.2.3 Estimation Based on Extreme Condition |
|
|
97 | (1) |
|
|
98 | |