|
|
1 | (34) |
|
|
|
1.2 Fundamental Issues of a Static Problem |
|
|
2 | (8) |
|
1.2.1 Governing Equation with Imperfections |
|
|
2 | (2) |
|
1.2.2 Simple Examples of Bifurcation Behavior |
|
|
4 | (6) |
|
1.3 Overview of Theoretical Concepts |
|
|
10 | (7) |
|
1.3.1 Imperfection Sensitivity Law |
|
|
10 | (2) |
|
1.3.2 Worst Imperfection of Structural Systems |
|
|
12 | (2) |
|
1.3.3 Random Variation of Imperfections |
|
|
14 | (1) |
|
1.3.4 Experimentally Observed Bifurcation Diagrams |
|
|
15 | (2) |
|
1.4 Overview of Theoretical Tools |
|
|
17 | (6) |
|
1.4.1 Group-Theoretic Bifurcation Theory |
|
|
17 | (3) |
|
1.4.2 Block-Diagonalization in Bifurcation Analysis |
|
|
20 | (3) |
|
1.5 Overview of Bifurcation of Symmetric Systems |
|
|
23 | (9) |
|
1.5.1 Recursive Bifurcation and Mode Switching of Sands |
|
|
23 | (2) |
|
1.5.2 Recursive Bifurcation of Steel Specimens |
|
|
25 | (2) |
|
1.5.3 Echelon Modes on Uniform Materials |
|
|
27 | (5) |
|
1.5.4 Flower Patterns on a Honeycomb Structure |
|
|
32 | (1) |
|
|
32 | (3) |
Part I Imperfect Behavior Around Simple Critical Points |
|
|
2 Local Behavior Around Simple Critical Points |
|
|
35 | (42) |
|
|
35 | (1) |
|
2.2 General Mathematical Framework |
|
|
36 | (5) |
|
2.2.1 Governing Equation with Imperfections |
|
|
36 | (1) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (1) |
|
2.3 Illustrative Example of Bifurcation Analysis |
|
|
41 | (5) |
|
|
41 | (2) |
|
|
43 | (2) |
|
2.3.3 Asymptotic Analysis |
|
|
45 | (1) |
|
2.4 Liapunov-Schmidt Reduction |
|
|
46 | (10) |
|
2.4.1 Reduction Procedure |
|
|
46 | (3) |
|
2.4.2 Criticality Condition |
|
|
49 | (2) |
|
2.4.3 Direction of the Bifurcating Path |
|
|
51 | (2) |
|
|
53 | (1) |
|
2.4.5 Power Series Expansion of Bifurcation Equation |
|
|
54 | (2) |
|
2.5 Classification of Simple Critical Points |
|
|
56 | (12) |
|
|
59 | (1) |
|
2.5.2 Transcritical Bifurcation Point |
|
|
60 | (3) |
|
2.5.3 Pitchfork Bifurcation Point |
|
|
63 | (5) |
|
2.6 Example of Pitchfork Bifurcation |
|
|
68 | (4) |
|
|
69 | (2) |
|
2.6.2 Asymptotic Analysis |
|
|
71 | (1) |
|
2.7 Appendix: Numerical Bifurcation Analysis Procedure |
|
|
72 | (4) |
|
|
72 | (2) |
|
2.7.2 Singularity Detection |
|
|
74 | (1) |
|
2.7.3 Branch Switching Analysis |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
3 Imperfection Sensitivity Laws |
|
|
77 | (24) |
|
|
77 | (2) |
|
3.2 Imperfection Sensitivity Laws |
|
|
79 | (8) |
|
|
80 | (1) |
|
3.2.2 Transcritical Bifurcation Point |
|
|
81 | (1) |
|
3.2.3 Pitchfork Bifurcation Point |
|
|
81 | (2) |
|
3.2.4 Systematic Derivation |
|
|
83 | (4) |
|
3.3 Imperfection Sensitivity of Simple Structures |
|
|
87 | (6) |
|
|
87 | (2) |
|
|
89 | (4) |
|
3.4 Realistic Example: Elastic-Plastic Plate |
|
|
93 | (4) |
|
3.4.1 Ultimate Buckling Strength |
|
|
95 | (1) |
|
3.4.2 Imperfection Sensitivity Laws |
|
|
95 | (2) |
|
3.5 Appendix: Hilltop Bifurcation of Steel |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
99 | (2) |
|
|
101 | (20) |
|
|
101 | (1) |
|
|
102 | (5) |
|
4.2.1 Governing Equation and Imperfection Sensitivity |
|
|
102 | (2) |
|
|
104 | (3) |
|
4.3 Theory of Worst Imperfection |
|
|
107 | (4) |
|
|
107 | (2) |
|
4.3.2 Derivation of Worst Imperfection |
|
|
109 | (2) |
|
4.4 Imperfection with Multiple Categories |
|
|
111 | (2) |
|
4.5 Worst Imperfection of Simple Structures |
|
|
113 | (6) |
|
|
113 | (5) |
|
4.5.2 Regular-Hexagonal Truss Dome |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
5 Random Imperfection (I) |
|
|
121 | (20) |
|
|
121 | (2) |
|
5.2 Probability Density Functions of Critical Loads |
|
|
123 | (5) |
|
5.2.1 Imperfection Coefficient |
|
|
123 | (2) |
|
5.2.2 Normalized Critical Load |
|
|
125 | (2) |
|
|
127 | (1) |
|
5.3 Evaluation of Probability Density Functions |
|
|
128 | (2) |
|
5.3.1 Theoretical Evaluation Procedure |
|
|
129 | (1) |
|
5.3.2 Semi-empirical Evaluation Procedure |
|
|
129 | (1) |
|
5.4 Distribution of Minimum Values |
|
|
130 | (3) |
|
5.5 Scatter of Critical Loads of Structures and Sands |
|
|
133 | (7) |
|
|
133 | (3) |
|
|
136 | (1) |
|
5.5.3 Truss Tower Structure |
|
|
137 | (3) |
|
|
140 | (1) |
|
|
140 | (1) |
|
6 Experimentally Observed Bifurcation Diagrams |
|
|
141 | (26) |
|
|
141 | (3) |
|
6.2 The Koiter Two-Thirds Power Law |
|
|
144 | (1) |
|
6.3 Extensions of the Koiter Law |
|
|
145 | (7) |
|
6.3.1 Crossing-Parabola Law |
|
|
145 | (2) |
|
6.3.2 Laws for Experimentally Observed Bifurcation Diagrams |
|
|
147 | (5) |
|
6.4 Recovering the Perfect System from Imperfect Systems |
|
|
152 | (3) |
|
6.4.1 Recovery from a Single Imperfect Path |
|
|
152 | (2) |
|
6.4.2 Recovery from a Series of Imperfect Paths |
|
|
154 | (1) |
|
6.5 Examples of Observed Bifurcation Diagrams |
|
|
155 | (9) |
|
6.5.1 Regular-Hexagonal Truss Dome |
|
|
155 | (4) |
|
|
159 | (5) |
|
|
164 | (1) |
|
|
164 | (3) |
Part II Theory of Imperfect Bifurcation for Systems with Symmetry |
|
|
7 Group and Group Representation |
|
|
167 | (34) |
|
|
167 | (1) |
|
|
168 | (4) |
|
|
168 | (2) |
|
|
170 | (1) |
|
7.2.3 Direct Product and Semidirect Product |
|
|
171 | (1) |
|
|
172 | (12) |
|
|
172 | (5) |
|
7.3.2 Irreducible Representation |
|
|
177 | (4) |
|
7.3.3 Absolute Irreducibility |
|
|
181 | (1) |
|
|
182 | (2) |
|
7.4 Block-Diagonalization Under Group Symmetry |
|
|
184 | (12) |
|
7.4.1 An Illustrative Example |
|
|
184 | (2) |
|
7.4.2 Block-Diagonalization Method: Basic Form |
|
|
186 | (8) |
|
7.4.3 Block-Diagonalization Method: Extended Form |
|
|
194 | (2) |
|
7.5 Block-Diagonalization of Symmetric Plate Element |
|
|
196 | (4) |
|
7.5.1 Symmetry of Element Stiffness Matrix |
|
|
197 | (1) |
|
7.5.2 Irreducible Representations |
|
|
198 | (1) |
|
7.5.3 Block-Diagonalization |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
200 | (1) |
|
8 Group-Theoretic Bifurcation Theory |
|
|
201 | (36) |
|
|
201 | (1) |
|
8.2 Bifurcation Due to Reflection Symmetry |
|
|
202 | (2) |
|
8.3 Symmetry of Equations |
|
|
204 | (4) |
|
8.3.1 Group Equivariance of Governing Equation |
|
|
204 | (2) |
|
8.3.2 Equivariance of Linear Parts |
|
|
206 | (1) |
|
8.3.3 Group-Theoretic Critical Point |
|
|
207 | (1) |
|
8.4 Liapunov-Schmidt Reduction |
|
|
208 | (9) |
|
8.4.1 Inheritance of Symmetry and Reciprocity |
|
|
208 | (1) |
|
8.4.2 Reduction Procedure |
|
|
209 | (3) |
|
8.4.3 Group Equivariance in the Reduction Process |
|
|
212 | (2) |
|
8.4.4 Criticality Condition |
|
|
214 | (1) |
|
8.4.5 Direction of Bifurcating Paths |
|
|
215 | (2) |
|
8.5 Symmetry of Solutions |
|
|
217 | (4) |
|
|
218 | (1) |
|
|
219 | (2) |
|
|
221 | (1) |
|
8.6 Simple Critical Point Under Symmetry |
|
|
221 | (2) |
|
|
222 | (1) |
|
8.6.2 Pitchfork Bifurcation Point |
|
|
222 | (1) |
|
8.7 Equivariant Branching Lemma |
|
|
223 | (4) |
|
8.8 Block-Diagonalization of Jacobian and Imperfection Sensitivity Matrices |
|
|
227 | (1) |
|
8.9 Example of Symmetric System |
|
|
228 | (6) |
|
8.9.1 Symmetry Group and Equivariance |
|
|
229 | (2) |
|
8.9.2 Irreducible Representations |
|
|
231 | (1) |
|
8.9.3 Symmetry of Critical Eigenvectors |
|
|
232 | (1) |
|
8.9.4 Symmetry of Imperfection Sensitivity Matrix |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (2) |
|
9 Bifurcation Behavior of D.-Equivariant Systems |
|
|
237 | (60) |
|
|
237 | (1) |
|
9.2 Dihedral and Cyclic Groups |
|
|
238 | (6) |
|
9.2.1 Definition of Groups |
|
|
238 | (3) |
|
9.2.2 Irreducible Representations |
|
|
241 | (3) |
|
9.3 Symmetry of Solutions |
|
|
244 | (11) |
|
|
244 | (4) |
|
9.3.2 Recursive Bifurcation |
|
|
248 | (1) |
|
9.3.3 Bifurcation of Domes |
|
|
249 | (6) |
|
9.4 Bifurcation Equations for a Double Critical Point |
|
|
255 | (5) |
|
9.4.1 Bifurcation Equations in Complex Variables |
|
|
255 | (3) |
|
|
258 | (2) |
|
|
260 | (1) |
|
9.5 Perfect Behavior Around a Double Critical Point |
|
|
260 | (9) |
|
9.5.1 Bifurcating Branches |
|
|
261 | (3) |
|
|
264 | (3) |
|
9.5.3 Summary of Perfect Behavior |
|
|
267 | (2) |
|
9.6 Imperfect Behavior Around a Double Critical Point |
|
|
269 | (6) |
|
9.6.1 Bifurcation Equations in Polar Coordinates |
|
|
269 | (1) |
|
|
270 | (2) |
|
9.6.3 Examples of Solution Curves |
|
|
272 | (3) |
|
9.7 Imperfection Sensitivity Laws |
|
|
275 | (8) |
|
|
278 | (1) |
|
|
279 | (3) |
|
|
282 | (1) |
|
9.8 Experimentally Observed Bifurcation Diagrams |
|
|
283 | (9) |
|
|
283 | (2) |
|
9.8.2 Simple Bifurcation Point |
|
|
285 | (1) |
|
9.8.3 Double Bifurcation Point |
|
|
286 | (2) |
|
9.8.4 Numerical Example: Regular-Pentagonal Truss Dome |
|
|
288 | (3) |
|
9.8.5 Experimental Example: Cylindrical Sand Specimens |
|
|
291 | (1) |
|
9.9 Appendix: Double Bifurcation Point on Ca-Symmetric Path |
|
|
292 | (2) |
|
|
294 | (1) |
|
|
295 | (2) |
|
10 Worst Imperfection (II) |
|
|
297 | (20) |
|
|
297 | (2) |
|
10.2 Formulation of Worst Imperfection |
|
|
299 | (3) |
|
10.2.1 Group Equivariance |
|
|
299 | (1) |
|
10.2.2 Imperfection Sensitivity Law |
|
|
300 | (1) |
|
10.2.3 Optimization Problems for Worst Imperfection |
|
|
301 | (1) |
|
10.3 Simple Critical Points |
|
|
302 | (2) |
|
10.3.1 Worst Imperfection |
|
|
302 | (1) |
|
10.3.2 Resonance of Symmetry |
|
|
303 | (1) |
|
10.4 Double Critical Points |
|
|
304 | (6) |
|
10.4.1 Block-Diagonalization |
|
|
304 | (4) |
|
10.4.2 Worst Imperfection |
|
|
308 | (1) |
|
10.4.3 Resonance of Symmetry |
|
|
309 | (1) |
|
10.5 Examples of Worst Imperfection |
|
|
310 | (5) |
|
|
310 | (3) |
|
10.5.2 Regular-Hexagonal Truss Dome |
|
|
313 | (2) |
|
|
315 | (1) |
|
|
316 | (1) |
|
11 Random Imperfection (II) |
|
|
317 | (18) |
|
|
317 | (1) |
|
11.2 Probability Density Function of Critical Loads |
|
|
318 | (8) |
|
|
318 | (2) |
|
11.2.2 Derivation of Probability Density Functions |
|
|
320 | (5) |
|
11.2.3 Semi-empirical Evaluation |
|
|
325 | (1) |
|
11.3 Distribution of Minimum Values |
|
|
326 | (1) |
|
11.4 Examples of Scatter of Critical Loads |
|
|
327 | (6) |
|
11.4.1 Regular-Polygonal Truss Tents and Domes |
|
|
327 | (2) |
|
11.4.2 Pentagonal Truss Dome |
|
|
329 | (2) |
|
11.4.3 Cylindrical Specimens of Sand and Concrete |
|
|
331 | (2) |
|
|
333 | (1) |
|
|
334 | (1) |
|
12 Numerical Analysis of Symmetric Systems |
|
|
335 | (26) |
|
|
335 | (1) |
|
12.2 Numerical Bifurcation Analysis of Symmetric Systems |
|
|
336 | (3) |
|
12.2.1 Analysis Procedure |
|
|
336 | (1) |
|
12.2.2 Examples of Numerical Bifurcation Analysis |
|
|
337 | (2) |
|
12.3 Revised Scaled-Corrector Method |
|
|
339 | (9) |
|
12.3.1 Original Scaled-Corrector Method |
|
|
340 | (2) |
|
12.3.2 Revised Scaled-Corrector Method |
|
|
342 | (2) |
|
12.3.3 Regular-Hexagonal Truss Dome |
|
|
344 | (4) |
|
12.4 Use of Block-Diagonalization in Bifurcation Analysis |
|
|
348 | (11) |
|
12.4.1 Eigenanalysis Versus Block-Diagonalization |
|
|
348 | (6) |
|
12.4.2 Block-Diagonal Form for Dn-Symmetric System |
|
|
354 | (1) |
|
12.4.3 Block-Diagonal Form for Cn-Symmetric System |
|
|
355 | (4) |
|
|
359 | (1) |
|
|
360 | (1) |
|
13 Efficient Transformation for Block-Diagonalization |
|
|
361 | (44) |
|
|
361 | (2) |
|
13.2 Construction of Transformation Matrix: Illustration |
|
|
363 | (7) |
|
13.2.1 Regular-Triangular Truss |
|
|
363 | (1) |
|
13.2.2 Representation Matrix |
|
|
364 | (2) |
|
13.2.3 Local Transformation Matrix |
|
|
366 | (2) |
|
13.2.4 Assemblage of Local Transformations |
|
|
368 | (2) |
|
13.3 Construction of Transformation Matrix: General Procedure |
|
|
370 | (13) |
|
13.3.1 Representation Matrix |
|
|
370 | (5) |
|
13.3.2 Local Transformation Matrix |
|
|
375 | (4) |
|
13.3.3 Assemblage of Local Transformations |
|
|
379 | (4) |
|
13.4 Formulas for Local Transformation Matrices |
|
|
383 | (7) |
|
13.5 Appendix: Derivation of Local Transformation Matrices |
|
|
390 | (11) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
391 | (2) |
|
|
393 | (2) |
|
|
395 | (2) |
|
|
397 | (4) |
|
|
401 | (1) |
|
|
402 | (3) |
Part III Modeling of Bifurcation Phenomena |
|
|
14 Bifurcation Behaviors of Cylindrical Soils |
|
|
405 | (30) |
|
|
405 | (4) |
|
14.2 Groups for Spatial Symmetry |
|
|
409 | (5) |
|
14.2.1 Symmetry of Cylindrical Domain |
|
|
409 | (2) |
|
|
411 | (3) |
|
14.2.3 Example of Description of Cylindrical Sand Deformation |
|
|
414 | (1) |
|
14.3 Experiments on Cylindrical Sand Specimens |
|
|
414 | (10) |
|
14.3.1 Recursive Bifurcation Behavior |
|
|
417 | (1) |
|
14.3.2 Mode Switching Behavior |
|
|
418 | (4) |
|
14.3.3 Recovery of Perfect System |
|
|
422 | (1) |
|
14.3.4 Application of Crossing-Line Law |
|
|
423 | (1) |
|
14.4 Appendix: Derivation of Bifurcation Rules |
|
|
424 | (9) |
|
14.4.1 Bifurcation of Dnh-Equivariant System |
|
|
425 | (6) |
|
14.4.2 Bifurcation of Dnd-Equivariant System |
|
|
431 | (2) |
|
|
433 | (1) |
|
|
433 | (2) |
|
15 Bifurcation of Steel Specimens |
|
|
435 | (14) |
|
|
435 | (1) |
|
15.2 Symmetry of a Rectangular Parallelepiped Domain |
|
|
436 | (2) |
|
15.3 Recursive Bifurcation Rule |
|
|
438 | (1) |
|
|
439 | (8) |
|
15.4.1 Effect of Cross-Sectional Shape |
|
|
441 | (3) |
|
15.4.2 Recursive Bifurcation |
|
|
444 | (3) |
|
|
447 | (1) |
|
|
448 | (1) |
|
|
448 | (1) |
|
16 Echelon-Mode Formation |
|
|
449 | (54) |
|
|
449 | (5) |
|
16.2 Symmetry Group of Cylindrical Domain |
|
|
454 | (3) |
|
16.2.1 Geometrical Symmetry |
|
|
454 | (1) |
|
16.2.2 Underlying Translational Symmetry |
|
|
455 | (2) |
|
16.3 Subgroups for Patterns with High Spatial Frequencies |
|
|
457 | (5) |
|
|
457 | (1) |
|
16.3.2 Oblique Stripe Pattern |
|
|
458 | (1) |
|
|
459 | (3) |
|
16.4 Recursive Bifurcation Leading to Echelon Modes |
|
|
462 | (2) |
|
16.4.1 Direct Bifurcation |
|
|
462 | (1) |
|
16.4.2 Recursive Bifurcation via Oblique Stripe Pattern |
|
|
462 | (1) |
|
16.4.3 Physical Scenario for Echelon Mode Formation |
|
|
463 | (1) |
|
16.5 Experiment on a Soil Specimen |
|
|
464 | (3) |
|
16.5.1 Deformation Patterns: Phenomenological Observation |
|
|
464 | (2) |
|
16.5.2 Deformation Patterns: Symmetry |
|
|
466 | (1) |
|
16.6 Image Simulations for Stripes on Kaolin |
|
|
467 | (9) |
|
16.6.1 Image Simulation Procedure |
|
|
467 | (3) |
|
16.6.2 Image Simulation for Kaolin |
|
|
470 | (6) |
|
16.7 Patterns on Sand Specimens |
|
|
476 | (7) |
|
16.7.1 Experiment and Visualization of Strain Fields |
|
|
476 | (1) |
|
|
477 | (3) |
|
16.7.3 Numerical Simulation |
|
|
480 | (1) |
|
16.7.4 Three-Dimensional Patterns |
|
|
481 | (2) |
|
16.8 Appendix: Derivation of Bifurcation Rules |
|
|
483 | (18) |
|
16.8.1 Bifurcation of O(2) x O(2)-Equivariant System |
|
|
483 | (8) |
|
16.8.2 Bifurcation of OB±nn-Equivariant System |
|
|
491 | (8) |
|
16.8.3 Bifurcation of Dinfinityinfinity-Equivariant System |
|
|
499 | (2) |
|
|
501 | (1) |
|
|
501 | (2) |
|
17 Flower Patterns on Honeycomb Structures |
|
|
503 | (44) |
|
|
503 | (2) |
|
17.2 Symmetry of Representative Volume Element |
|
|
505 | (2) |
|
17.3 Bifurcation Rule for Representative Volume Element |
|
|
507 | (5) |
|
17.3.1 Irreducible Representations for 2 x 2 Cells |
|
|
507 | (1) |
|
17.3.2 Simple Critical Points |
|
|
508 | (2) |
|
17.3.3 Double Critical Points |
|
|
510 | (1) |
|
17.3.4 Triple Critical Points |
|
|
510 | (2) |
|
17.4 Derivation of Bifurcation Equation |
|
|
512 | (3) |
|
17.5 Solving of Bifurcation Equation |
|
|
515 | (10) |
|
17.5.1 The Representative Case: µ = (3, 3) |
|
|
515 | (6) |
|
17.5.2 Another Case: µ = (3, 1) |
|
|
521 | (2) |
|
17.5.3 Other Cases: µ = (3, 2) and µ = (3, 4) |
|
|
523 | (1) |
|
17.5.4 Stability of Bifurcating Branches |
|
|
523 | (1) |
|
17.5.5 Analysis by Equivariant Branching Lemma |
|
|
524 | (1) |
|
17.6 Numerical Analysis of Honeycomb Cellular Solids |
|
|
525 | (3) |
|
17.7 Irreducible Representations for n x n Cells |
|
|
528 | (2) |
|
17.7.1 Four-Dimensional Irreducible Representations |
|
|
528 | (1) |
|
17.7.2 Six-Dimensional Irreducible Representations |
|
|
529 | (1) |
|
17.7.3 Twelve-Dimensional Irreducible Representations |
|
|
530 | (1) |
|
17.8 Solving of Bifurcation Equation for n x n Cells |
|
|
530 | (16) |
|
17.8.1 Bifurcation Point of Multiplicity 6 |
|
|
531 | (6) |
|
17.8.2 Bifurcation Point of Multiplicity 12 |
|
|
537 | (9) |
|
|
546 | (1) |
|
|
546 | (1) |
A Answers to Problems |
|
547 | (26) |
References |
|
573 | (10) |
Index |
|
583 | |