Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 230 pages
  • Ilmumisaeg: 18-Dec-2012
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309257770

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Higher education is a linchpin of the American economy and society: teaching and research at colleges and universities contribute significantly to the nation's economic activity, both directly and through their impact on future growth; federal and state governments support teaching and research with billions of taxpayers' dollars; and individuals, communities, and the nation gain from the learning and innovation that occur in higher education.



In the current environment of increasing tuition and shrinking public funds, a sense of urgency has emerged to better track the performance of colleges and universities in the hope that their costs can be contained without compromising quality or accessibility. Improving Measurement of Productivity in Higher Education presents an analytically well-defined concept of productivity in higher education and recommends empirically valid and operationally practical guidelines for measuring it. In addition to its obvious policy and research value, improved measures of productivity may generate insights that potentially lead to enhanced departmental, institutional, or system educational processes.



Improving Measurement of Productivity in Higher Education constructs valid productivity measures to supplement the body of information used to guide resource allocation decisions at the system, state, and national levels and to assist policymakers who must assess investments in higher education against other compelling demands on scarce resources. By portraying the productive process in detail, this report will allow stakeholders to better understand the complexities ofand potential approaches tomeasuring institution, system and national-level performance in higher education.

Table of Contents



Front Matter Summary 1 The Importance of Measuring Productivity in Higher Education 2 Defining Productivity for Higher Education 3 Why Measurement of Higher Education Productivity Is Difficult 4 Advancing the Conceptual Framework 5 Recommendations for Creating and Extending the Measurement Framework 6 Implementation and Data Recommendations References and Bibliography Appendix A: Commonly Used Performance Metrics for Higher Education Appendix B: Methods for Measuring Comparative Quality and Cost Developed by the National Center for Academic Transformation Appendix C: Overview of Data Sources Appendix D: Estimating Project-Related Departmental Research Appendix E: Biographical Sketches of Panel Members Committee on National Statistics Board on Testing and Assessment
Summary 1(8)
Motivation and Panel Charge
1(1)
The Productivity Measure
2(1)
Measurement Limitations and Key Areas for Model Enhancement
3(3)
Joint Production
3(1)
Quality Variation and Change
4(1)
Nonmarket Production
5(1)
Segmentation by Institution Type
6(1)
Implications of Complexities for Measurement Prospects
6(1)
Developing the Data Infrastructure
7(2)
1 The Importance Of Measuring Productivity In Higher Education
9(10)
1.1 Social and Policy Context
10(3)
1.2 Charge to the Panel
13(4)
1.3 Audience and Report Structure
17(2)
2 Defining Productivity For Higher Education
19(18)
2.1 Basic Concepts
21(10)
2.1.1 Outputs
23(2)
2.1.2 Inputs
25(4)
2.1.3 Instructional and Noninstructional Elements of the Higher Education Production Function
29(2)
2.2 Productivity Contrasted with Other Measurement Objectives
31(6)
2.2.1 Productivity and Cost
31(2)
2.2.2 Other Performance Metrics
33(4)
3 Why Measurement Of Higher Education Productivity Is Difficult
37(24)
3.1 Beyond the Degree Factory---Multiple Outputs and Joint Production
38(2)
3.2 Heterogeneity of Inputs and Outputs
40(3)
3.3 Nonmarket Variables and Externalities
43(1)
3.4 Quality Change and Variation
44(11)
3.4.1 Inputs
45(5)
3.4.2 Outputs (and Outcomes)
50(5)
3.5 Measurement at Different Levels of Aggregation
55(5)
3.5.1 Course and Department Level
55(2)
3.5.2 Campus Level
57(1)
3.5.3 State or System Level
58(2)
3.6 Conclusion
60(1)
4 Advancing The Conceptual Framework
61(26)
4.1
Chapter Overview
61(2)
4.2 A Baseline Multi-Factor Productivity Model for Higher Education
63(8)
4.2.1 Multi-Factor Productivity Indices
64(1)
4.2.2 Outputs
65(2)
4.2.3 Inputs
67(1)
4.2.4 Allocations to Education
68(1)
4.2.5 Illustrative Productivity Calculations
69(2)
4.3 Institutional Segmentation and Disaggregative Indices
71(3)
4.3.1 Institutional Segmentation
72(1)
4.3.2 State Level and Single-Institution Indices
73(1)
4.4 Differentiating Labor Categories
74(4)
4.5 Differentiating Outputs
78(1)
4.6 Variations in Output Quality
79(8)
Technical Appendix: The Tornqvist Productivity Index
82(5)
5 Recommendations For Creating And Extending The Measurement Framework
87(20)
5.1 The Basic Productivity Measure
89(6)
5.1.1 Instructional Outputs and Benefits
90(3)
5.1.2 Instructional Inputs and Costs
93(2)
5.2 Adjusting for Research Production
95(4)
5.2.1 Project Driven Departmental Research
97(1)
5.2.2 Discretionary Departmental Research
98(1)
5.3 Dealing with Heterogeneity and Quality Issues
99(8)
5.3.1 Variation of Inputs
100(3)
5.3.2 Quality Variation and Change of Outputs
103(4)
6 Implementation And Data Recommendations
107(18)
6.1 General Strategies
107(2)
6.2 Recommendations for Improving the Data Infrastructure
109(16)
6.2.1 Data Demanded by the Conceptual Framework
109(1)
6.2.2 Envisioning the Next Generation IPEDS
110(4)
6.2.3 Administrative Data Sources
114(6)
6.2.4 Survey Based Data Sources
120(5)
REFERENCES AND BIBLIOGRAPHY
125(12)
APPENDIXES
A Commonly Used Performance Metrics for Higher Education
137(8)
B Methods for Measuring Comparative Quality and Cost Developed by the National Center for Academic Transformation
145(6)
C Overview of Data Sources
151(52)
D Estimating Project-Related Departmental Research
203(2)
E Biographical Sketches of Panel Members
205