Muutke küpsiste eelistusi

E-raamat: Income Modeling and Balancing: A Rigorous Treatment of Distribution Patterns

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a rigorous treatment of the mathematical instruments available for dealing with income distributions, in particular Lorenz curves and related methods. The  methods examined allow us to analyze, compare and modify such distributions from an economic and social perspective. Though balanced income distributions are key to peaceful coexistence within and between nations, it is often difficult to identify the right kind of balance needed, because there is an interesting interaction with innovation and economic growth. The issue of justice, as discussed in Thomas Pikettys bestseller Capital in the Twenty-First Century or in the important book The Price of Inequality by Nobel laureate Joseph Stiglitz, is also touched on. Further, there is a close connection to the issue of democracy in the context of globalization. One highlight of the book is its rigorous treatment of the so-called Atkinson theorem and some extensions, which help to explain under which type of societal utility functions nations tend to operate either in the direction of more balance or less balance. Finally, there are some completely new insights into changing the balance pattern of societies and the kind of coalitions between richer and poorer parts of society to organize political support in democracies in either case.  

Oxford University's Sir Tony Atkinson, well known for his so-called Atkinson theorem, writes in his foreword to the book: [ The authors] contribute directly to t

he recent debates that are going on in politics. [ ] with this book the foundation of arguments concerning a proper balance in income distribution in the sense of identifying an efficient inequality range has got an additional push from mathematics, which I appreciate very much.  

Arvustused

The book gives a rigorous treatment of income modeling and balancing. The topic is related to scientific questions in theoretical economics, applied mathematics, politics and sociology. The book is useful for academics and professionals in the field of economy, applied mathematics and policy. (Pavel Stoynov, zbMATH 1314.91007, 2015)

Part I Lorenz Curves, Orders and Redistribution
1 Introduction
3(6)
2 The Generalized Inverse of Distribution Functions
9(20)
2.1 A "Gentle" Derivation of the Generalized Inverse
9(3)
2.2 Properties of the Generalized Inverse Distribution Function
12(5)
2.3 Generalized Inverse and Order Relations
17(1)
2.4 Approximations
18(4)
2.5 Generalized Inverse and Computations
22(7)
2.5.1 Generalized Inverses from Generalized Inverses
22(1)
2.5.2 Generalized Inverse of the Generalized Inverse
23(3)
2.5.3 Generalized Inverse and Expectation Values
26(2)
References
28(1)
3 Lorenz Densities and Lorenz Curves
29(26)
3.1 Introduction of Lorenz Densities and Lorenz Curves
29(5)
3.2 Some Properties of Lorenz Densities and Lorenz Curves
34(3)
3.3 Approximations
37(4)
3.3.1 Approximations Based on Distribution Functions
37(4)
3.3.2 Related Approximations
41(1)
3.4 Characterizations of Lorenz Densities and Lorenz Curves
41(3)
3.5 Lorenz Curves for all Distributions
44(4)
3.6 Lorenz Curves from Lorenz Curves
48(1)
3.6.1 Lorenz Curves from Two or More Lorenz Curves
48(1)
3.6.2 Lorenz Curves from One Lorenz Curve
48(1)
3.7 Lorenz Curves for Finite and Infinite Variance Distributions
49(1)
3.8 The Gini Index and Other Inequality Indices
50(3)
3.8.1 Gini Index
50(2)
3.8.2 Other Inequality Indices
52(1)
3.9 Lorenz Curves in Higher Dimensions
53(2)
References
53(2)
4 Lorenz Curves and Partial Orders
55(28)
4.1 Partial Orders for Lorenz Curves
55(2)
4.2 Lorenz Order and Majorization
57(5)
4.3 Lorenz Order and Integral Orders
62(7)
4.3.1 Lorenz Curves and Orders
62(6)
4.3.2 Lorenz Densities and the Increasing Convex Order
68(1)
4.4 Utility Functions and Lorenz Curves
69(14)
4.4.1 A Representation Formula
69(5)
4.4.2 Modifications of the Representation
74(1)
4.4.3 Utility of Consumption
75(6)
References
81(2)
5 Transfer and Distribution Approximation
83(12)
5.1 Convergence in Distribution
83(2)
5.2 Extension of Pigou--Dalton Transfers
85(4)
5.3 Towards Strengthening Convergence in Distribution
89(2)
5.4 A Probabilistic Version of Pigou--Dalton Transfers
91(1)
5.5 Taxation and Transfer
92(2)
5.6 Further Order Relation
94(1)
References
94(1)
6 Societal Utility and the Atkinson Theorem
95(8)
6.1 Pigou-Dalton Transfers: Revisited
96(2)
6.2 Pigou-Dalton Transfers and Distribution Approximations
98(1)
6.3 Economic Interpretation
99(4)
References
100(3)
Part II Lorenz Curves and Models
7 Pareto Distribution, Self-similarity and Empirics
103(26)
7.1 Self-similarity of Lorenz Curves
106(10)
7.1.1 Pure Self-similarity
107(2)
7.1.2 Gini Self-similarity
109(2)
7.1.3 Median Self-similarity
111(5)
7.2 Lorenz Duality
116(5)
7.2.1 Transformations
116(2)
7.2.2 Alternative Transformation
118(3)
7.3 Plato's Concept of Social Justice
121(1)
7.4 Empirics of Income Distributions
122(7)
7.4.1 Best Fit Values for Nations
122(3)
7.4.2 Mean Value and Median in Poverty Assessment
125(1)
7.4.3 Conclusion: The General Picture
126(2)
References
128(1)
8 Proportionality-Induced Distribution Laws
129(12)
8.1 Geometrical Interpretation
129(2)
8.2 The Main Differential Equations of the Equity Calculus
131(1)
8.3 Closed Form Solutions
132(2)
8.4 Empirics
134(1)
8.5 Further Differential Equations of the Equity Calculus
135(5)
8.5.1 Fractured Exponents
135(1)
8.5.2 Proportionality Functions
136(1)
8.5.3 Slack Functions
137(1)
8.5.4 Averages over Other Income Ranges
138(2)
8.5.5 Limitations
140(1)
8.6 System of Proportionality Laws
140(1)
References
140(1)
9 Preferences and Coalitions
141(32)
9.1 Introduction
141(1)
9.2 Model
142(3)
9.2.1 General Approach
142(1)
9.2.2 Related Work
143(1)
9.2.3 Formal Approach
144(1)
9.3 Redistribution
145(17)
9.3.1 Concept
145(2)
9.3.2 Identifying Minimum Loss Coalition Partners
147(3)
9.3.3 Bifurcation
150(5)
9.3.4 Situation After Compensation but Before Complete Redistribution
155(2)
9.3.5 Situation After Complete Redistribution
157(3)
9.3.6 Varying Majority Levels
160(2)
9.4 Other Income Distributions
162(8)
9.4.1 One-Parametric Lorenz Curves
162(4)
9.4.2 Two-Parametric Lorenz Curves
166(2)
9.4.3 Three-Parametric and Other Lorenz Curves
168(2)
9.5 Conclusion
170(3)
Appendix: Bifurcation Parameters for One-Parametric Lorenz Curves---General Case
170(1)
References
171(2)
Index 173
Dr. Thomas Kämpke is a senior scientist at the Research Institute for Applied Knowledge Processing in Ulm, Germany. He is working in various areas of applied sciences including mathematical modeling in economical and technological applications.

Prof. Dr. Dr. Franz Josef Radermacher (Dr. h.c.) holds a faculty position for "Data Bases / Artificial Intelligence" at the University of Ulm and, at the same time, is the Director of FAW/n (Research Institute for Applied Knowledge Processing/n), Ulm. Member of the Club of Rome and of several national and international advisory boards as well as President of the Senat der Wirtschaft e. V. (Senate of the Economy), Bonn, President of the Global Economic Network (GEN), Vienna, and Vice President of the Ecosocial Forum Europe, Vienna.